integrable deformations for n 4 sym and abjm amplitudes
play

Integrable Deformations for N = 4 SYM and ABJM Amplitudes Till - PowerPoint PPT Presentation

Integrable Deformations for N = 4 SYM and ABJM Amplitudes Till Bargheer IAS Princeton Dec 12, 2014 Based on 1407.4449 with Yu-tin Huang, Florian Loebbert, Masahito Yamazaki Gramannian Geometry of Scattering Amplitudes Walter Burke Institute


  1. Integrable Deformations for N = 4 SYM and ABJM Amplitudes Till Bargheer IAS Princeton Dec 12, 2014 Based on 1407.4449 with Yu-tin Huang, Florian Loebbert, Masahito Yamazaki Graßmannian Geometry of Scattering Amplitudes Walter Burke Institute Workshop, California Institute of Technology

  2. Motivation On-shell integrand for planar N = 4 and ABJM well understood How to integrate? Regularization breaks conformal symmetry But even for finite ratio function: No practical way to integrate ⇒ Try to deform integrand, preserving as much symmetry as possible Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 1 / 18

  3. Deformed On-Shell Diagrams in N = 4 SYM (I) � Ferro, Łukowski, Meneghelli � Deformed three-point amplitudes: Plefka, Staudacher, 2012 1 3 � δ 4 ( P ) δ 4 ( ˜ d α 2 d α 3 Q ) δ 4 | 4 ( C ◦ ·W ) ≃ = α 1+ a 2 α 1+ a 3 [12] 1+ a 3 [23] 1 − a 1 [31] 1+ a 2 2 3 c 1 = a 1 ≡ a 2 + a 3 , c 2 = − a 2 , c 3 = − a 3 2 1 3 � δ 4 ( P ) δ 8 ( Q ) d α 1 d α 2 δ 8 | 8 ( C • ·W ) ≃ = α 1+ a 1 α 1+ a 2 � 12 � 1 − a 3 � 23 � 1+ a 1 � 31 � 1+ a 2 1 2 c 1 = a 1 , c 2 = a 2 , c 3 = − a 3 ≡ − a 1 − a 2 2 n � � J a ∈ psu (2 , 2 | 4) , J a = f abc � J b i J c u i J a Yangian: j + i 1 ≤ i<j ≤ n i =1 � Beisert, Broedel � u + j = u − u ± Invariance conditions: σ ( j ) , j = u j ± c j Rosso, 2014 Deformed helicities: h j = 1 − C j , h j = 1 − c j Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 2 / 18

  4. Deformed On-Shell Diagrams in N = 4 SYM (II) Bigger on-shell diagrams can be obained by gluing: Products & Fusion 1 n i − → Y 1 Y 2 Y ′ Y j m m +1 Reduced diagram ≃ permutation σ u + j = u − u ± j = u j ± c j Invariance conditions from gluing: σ ( j ) � Beisert, Broedel � General deformed on-shell diagram: Rosso, 2014 � n F − 1 � d α j δ 4 k | 4 k ( C · W ) , Y ( W i , a i ) = α 1+ a j j =1 j Edge deformation parameters α i equal central charges on internal lines, fully determined by external u i , c i via left-right paths Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 3 / 18

  5. Deformations in ABJM: Four-Vertex δ 3 ( P ) δ 6 ( Q ) The Basic diagram in A 4 = = ABJM is the four-vertex: � 12 � � 23 � Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 4 / 18

  6. Deformations in ABJM: Four-Vertex δ 3 ( P ) δ 6 ( Q ) The Basic diagram in � A 4 ( z ) = = z � 12 � 1 − z � 23 � 1+ z ABJM is the four-vertex: � TB, Huang, Loebbert � Admits a deformation, parameter z Yamazaki, 2014 Can show invariance under level-zero osp (6 | 4) Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 4 / 18

  7. Deformations in ABJM: Four-Vertex δ 3 ( P ) δ 6 ( Q ) The Basic diagram in � A 4 ( z ) = = z � 12 � 1 − z � 23 � 1+ z ABJM is the four-vertex: � TB, Huang, Loebbert � Admits a deformation, parameter z Yamazaki, 2014 Can show invariance under level-zero osp (6 | 4) n � � J a = f abc � J b i J c u i J a Level-one generators: j + i 1 ≤ i<j ≤ n i =1 Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 4 / 18

  8. Deformations in ABJM: Four-Vertex δ 3 ( P ) δ 6 ( Q ) The Basic diagram in � A 4 ( z ) = = z � 12 � 1 − z � 23 � 1+ z ABJM is the four-vertex: � TB, Huang, Loebbert � Admits a deformation, parameter z Yamazaki, 2014 Can show invariance under level-zero osp (6 | 4) n � � J a = f abc � J b i J c u i J a Level-one generators: j + i 1 ≤ i<j ≤ n i =1 �� � � � � P αβ = � L ( α P γβ ) − Q ( αA Q β ) u k P αβ 1 jγ + δ ( α k A − ( j ↔ k ) γ D j + 2 k j k 1 ≤ j<k ≤ n k Invariance under � P implies full Y( osp (6 | 4)) invariance. u j Constraints: u k z = z = u 1 − u 2 . u 1 = u 3 , u 2 = u 4 , u j − u k Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 4 / 18

  9. Deformations in ABJM: Gluing Construct bigger deformed diagrams from four-vertex Products: Invariance trivial, no constraints 1 n Y (1 . . . n ) = Y 1 (1 . . . m ) Y 2 ( m + 1 . . . n ) n � � Y 1 Y 2 J a = f abc � J b i J c u i J a j + i 1 ≤ i<j ≤ n i =1 m m +1 Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 5 / 18

  10. Deformations in ABJM: Gluing Construct bigger deformed diagrams from four-vertex Products: Invariance trivial, no constraints 1 n Y (1 . . . n ) = Y 1 (1 . . . m ) Y 2 ( m + 1 . . . n ) n � � Y 1 Y 2 J a = f abc � J b i J c u i J a j + i 1 ≤ i<j ≤ n i =1 m m +1 � Y ′ ( . . . ) = d 2 | 3 Λ i d 2 | 3 Λ j δ 2 | 3 ( Λ i − iΛ j ) Y ( . . . , i, j, . . . ) Fusing: ☛ ✟ i − → Constraint: u i = u j Y ′ Y j ✡ ✠ Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 5 / 18

  11. Deformations in ABJM: Gluing Products: Invariance trivial, no constraints 1 n Y (1 . . . n ) = Y 1 (1 . . . m ) Y 2 ( m + 1 . . . n ) n � � Y 1 Y 2 J a = f abc � J b i J c u i J a j + i 1 ≤ i<j ≤ n i =1 m m +1 � Y ′ ( . . . ) = d 2 | 3 Λ i d 2 | 3 Λ j δ 2 | 3 ( Λ i − iΛ j ) Y ( . . . , i, j, . . . ) Fusing: ☛ ✟ i − → Constraint: u i = u j Y ′ Y j ✡ ✠ Can construct all deformed diagrams by iterated product and fusion Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 5 / 18

  12. Deformations in ABJM: General Diagrams Fundamental vertex is four-valent ⇒ General 2 k -point diagram can be drawn with k straight lines z 6 u 1 z 1 z 4 z 5 u 2 z 2 z 3 u 3 u 4 u j Characterized by order-two permutation σ , σ 2 = 1 One evaluation parameter on each line, u j = u σ ( j ) u k z = Vertex parameters z i completely fixed by constraint u j − u k Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 6 / 18

  13. Deformations in ABJM: R-Matrix Formalism (I) Reformulate invariants in terms of R-matrix construction. j Λ ′′ j R jk ( z ) ◦ f = f z k k Λ ′ � d Λ ′ d Λ ′′ A 4 ( z )( Λ j , Λ k , iΛ ′ , iΛ ′′ ) f ( Λ ′′ , Λ ′ ) ( R jk ( z ) ◦ f )( Λ j , Λ k ) ≡ R-matrix kernel is four-point amplitude Just a reformulation of gluing ⇒ R jk ( z ) trivially preserves invariance R-operator intertwines two single-particle representations Permutes evaluation parameters: J a ( . . . , u j , u k , . . . ) R jk ( z ) = R jk ( z ) � � J a ( . . . , u k , u j , . . . ) (on space of invariants) Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 7 / 18

  14. Deformations in ABJM: R-Matrix Formalism (II) R-operator permutes evaluation parameters: J a ( . . . , u j , u k , . . . ) R jk ( z ) = R jk ( z ) � � J a ( . . . , u k , u j , . . . ) Invariants are chains of R-matrices acting on vacuum Ω 2 k : k � δ 2 | 3 ( Λ 2 j − 1 + iΛ 2 j ) Y 2 k = R i ℓ ,j ℓ ( z ℓ ) . . . R i 1 ,j 1 ( z 1 ) Ω 2 k , Ω 2 k = j =1 Vacuum permutation: σ = [1 , 2][3 , 4] . . . [2 k − 1 , 2 k ] Action of R-matrices conjugate the permutation: Y 2 k → R ij Y 2 k ⇒ σ → [ i, j ] · σ · [ i, j ] = Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 8 / 18

  15. Deformations in ABJM: R-Matrix Formalism (II) R-operator permutes evaluation parameters: J a ( . . . , u j , u k , . . . ) R jk ( z ) = R jk ( z ) � � J a ( . . . , u k , u j , . . . ) Invariants are chains of R-matrices acting on vacuum Ω 2 k : k � δ 2 | 3 ( Λ 2 j − 1 + iΛ 2 j ) Y 2 k = R i ℓ ,j ℓ ( z ℓ ) . . . R i 1 ,j 1 ( z 1 ) Ω 2 k , Ω 2 k = j =1 Vacuum permutation: σ = [1 , 2][3 , 4] . . . [2 k − 1 , 2 k ] Action of R-matrices conjugate the permutation: Y 2 k → R ij Y 2 k = ⇒ σ → [ i, j ] · σ · [ i, j ] 1 2 3 4 5 6 Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 8 / 18

  16. Deformations in ABJM: R-Matrix Formalism (II) R-operator permutes evaluation parameters: J a ( . . . , u j , u k , . . . ) R jk ( z ) = R jk ( z ) � � J a ( . . . , u k , u j , . . . ) Invariants are chains of R-matrices acting on vacuum Ω 2 k : k � δ 2 | 3 ( Λ 2 j − 1 + iΛ 2 j ) Y 2 k = R i ℓ ,j ℓ ( z ℓ ) . . . R i 1 ,j 1 ( z 1 ) Ω 2 k , Ω 2 k = j =1 Vacuum permutation: σ = [1 , 2][3 , 4] . . . [2 k − 1 , 2 k ] Action of R-matrices conjugate the permutation: Y 2 k → R ij Y 2 k = ⇒ σ → [ i, j ] · σ · [ i, j ] 2 3 1 4 5 6 Till Bargheer — Integrable Deformations for N = 4 SYM and ABJM Amplitudes — Caltech — 12 Dec 2014 8 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend