integrable spin chains with u 1 3 symmetry
play

Integrable spin chains with U(1) 3 symmetry Lisa Freyhult Helsinki - PowerPoint PPT Presentation

Deformations in AdS/CFT Integrable spin chains with U(1) 3 symmetry Lisa Freyhult Helsinki 28/10 2005 freyhult@nordita.dk Deformations in AdS/CFT p.1/30 Plan Introduction -deformation and generalisations in gauge theory


  1. Deformations in AdS/CFT Integrable spin chains with U(1) 3 symmetry Lisa Freyhult Helsinki 28/10 2005 freyhult@nordita.dk Deformations in AdS/CFT – p.1/30

  2. Plan • Introduction • β -deformation and generalisations in gauge theory • Corresponding deformations in string theory • Integrability, factorized scattering and the coordinate Bethe ansatz • Yang-Baxter equation and results for integrability • Conclusion and Outlook Based on work with C. Kristjansen and T. Månsson [hep-th/0510221] [Staudacher hep-th/0412188] [Berenstein, Cherkis hep-th/0405215] [Lunin, Maldacena hep-th/0502086] [Frolov hep-th/0503201] [Frolov, Tseytlin, Roiban hep-th/0503192,0507021] [Beisert, Staudacher hep-th/0504190] [Beisert, Roiban hep-th/0505187] Deformations in AdS/CFT – p.2/30

  3. Introduction Using integrability to study the AdS/CFT duality has been a very succesful approach • Scaling dimension of long operators found by diagonalising the Dilatation operator using the Bethe ansatz. • Agrees with the energy of semiclassical spinning strings up to 3 loops. • Agreement on the level of actions, etc. • Succes largely due to integrability Deformations in AdS/CFT – p.3/30

  4. Introduction Gauge-string duality for less supersymmetry? Marginal deformations of N = 4 with deformation parameter β , also called β -deformations [Leigh, Strassler] ⇔ Strings in the Lunin-Maldacena background AdS 5 × S 5 [Lunin, Maldacena] β Possible to define semiclassical strings on this background, string energies typically of the form λ ′ = λ 1 + λ ′ ( e 1 + e 2 ( βJ ) + e 3 ( βJ ) 2 ) + O ( λ ′ 2 ) ` ´ E = J J 2 Also: Extension to three deformation parameters β 1 , β 2 and β 3 . [Frolov] [Beisert, Roiban] Parameters are allowed to be complex. Deformations in AdS/CFT – p.4/30

  5. The Lunin-Maldacena background Obtained by deforming the string sigma model in AdS 5 × S 5 by making a TsT transformation. Sigma model on S 5 : √ Z dσ Z λ “ ” γ αβ ∂ α r i ∂ β r i + r 2 i ∂ α φ i ∂ β φ i + Λ( r 2 S S 5 = − dτ i − 1) 2 2 π Original proposal: Change of variables φ 1 = ϕ 3 − ϕ 2 , φ 2 = ϕ 1 + ϕ 2 + ϕ 3 , φ 3 = ϕ 3 − ϕ 1 1) T-duality on circle parametrised by ϕ 1 2) Shift ϕ 2 → ϕ 2 + ˆ γϕ 1 3) T-duality on circle parametrised by ϕ 1 √ Z dσ »„ « Z λ X X ∂ α r i ∂ β r i + Gr 2 γ 2 Gr 2 1 r 2 2 r 2 2 π γ αβ S = − dτ i ∂ α φ i ∂ β φ i + ˆ ∂ α φ i ∂ β φ j 3 2 i j – γGǫ αβ ( r 2 1 r 2 2 ∂ α φ 1 ∂ β φ 2 + r 2 2 r 2 3 ∂ α φ 2 ∂ β φ 3 + r 2 3 r 2 1 ∂ α φ 3 ∂ β φ 1 ) + Λ( r 2 − 2ˆ i − 1) G − 1 = 1 + ˆ γ 2 ( r 2 1 r 2 2 + r 2 1 r 2 3 + r 2 2 r 2 3 ) Deformations in AdS/CFT – p.5/30

  6. The Lunin-Maldacena background This can be generalized to generate a three parameter deformation. Apply a sequence of TsT dualities: • TsT on ( φ 1 , φ 2 ) T-duality on φ 1 and shift by ˆ γ 3 on φ 2 • TsT on ( φ 2 , φ 3 ) T-duality on φ 2 and shift by ˆ γ 1 on φ 3 • TsT on ( φ 3 , φ 1 ) T-duality on φ 3 and shift by ˆ γ 2 on φ 1 The dual background for complex parameters, β i = ˆ γ i + i ˆ σ i , is found by per- forming SL (2 , R ) transformations. I.e. a sequence of S σ Ts γ TS − 1 gives the σ three complex parameter background Deformations in AdS/CFT – p.6/30

  7. β -deformed N = 4 SYM Superpotential in N = 4 W N =4 = Tr (Φ 1 Φ 2 Φ 3 − Φ 1 Φ 3 Φ 3 ) Two exactly marginal deformations in N = 4 W def = Tr ( e iπβ Φ 1 Φ 2 Φ 3 − e − iπβ Φ 1 Φ 3 Φ 3 ) + h ′ Tr (Φ 3 1 + Φ 3 2 + Φ 3 3 ) The resulting theory is N = 1 supersymmetric and conformal. Set h ′ = 0 . Deformations in AdS/CFT – p.7/30

  8. β -deformed N = 4 SYM In terms of component fields „ | e iπβ Φ 1 Φ 2 − e − iπβ Φ 2 Φ 1 | 2 + | e iπβ Φ 2 Φ 3 − e − iπβ Φ 3 Φ 2 | 2 V = Tr « Φ 1 ] 2 + [Φ 2 , ¯ Φ 2 ] 2 + [Φ 3 , ¯ + | e iπβ Φ 3 Φ 1 − e − iπβ Φ 1 Φ 3 | 2 [Φ 1 , ¯ Φ 3 ] 2 ´ ` + Tr Introduce a more general deformation 3 (6) parameter deformation „ Φ 1 Φ 2 − e − iπβ 1 Φ 2 Φ 1 | 2 + | e iπβ 2 Φ 2 Φ 3 − e − iπβ 2 Φ 3 Φ 2 | 2 | e iπβ 1 V = Tr 1 « Φ 1 ] 2 + [Φ 2 , ¯ Φ 2 ] 2 + [Φ 3 , ¯ + | e iπβ 3 Φ 3 Φ 1 − e − iπβ 3 Φ 1 Φ 3 | 2 [Φ 1 , ¯ Φ 3 ] 2 ´ ` + Tr β i ∈ C This deformation is not supersymmetric but conformal. Deformations in AdS/CFT – p.8/30

  9. Dilatation operator in the deformed theory Consider operators in N = 4 of the form O ( x ) = Tr ( X J 1 Y J 2 Z J 3 + . . . ) X , Y , Z chiral scalars Dilatation operator associated with su (3) nearest neighbour ferromagnetic spin chain. J J λ λ X X D = (1 k,k +1 − P k,k +1 ) H k,k +1 = 8 π 2 8 π 2 k =1 k =1 [Minahan, Zarembo]. This is generalized to the full theory giving the dilatation operator in psu (2 , 2 | 4) . Higher loops introduce interactions beyond nearest neighbours. We can write the su (3) hamiltonian in terms of the generators E ij | k � = δ jk | i � Deformations in AdS/CFT – p.9/30

  10. Dilatation operator The su (3) sector in N = 4 H su (3) 00 E k +1 11 E k +1 00 E k +1 22 E k +1 11 E k +1 22 E k +1 k,k +1 = E k + E k + E k + E k + E k + E k 11 00 22 00 22 11 − E k 12 E k +1 − E k 21 E k +1 − E k 10 E k +1 − E k 01 E k +1 − E k 20 E k +1 − E k 02 E k +1 21 12 01 10 02 20 On matrix form 0 1 0 0 0 0 0 0 0 0 0 B C − 1 0 1 0 0 0 0 0 0 B C B C B C − 1 0 0 1 0 0 0 0 0 B C B C B C 0 − 1 0 1 0 0 0 0 0 B C B C H su (3) = B C 0 0 0 0 0 0 0 0 0 B C B C B C − 1 0 0 0 0 0 1 0 0 B C B C B C − 1 0 0 0 0 0 1 0 0 B C B C B − 1 C 0 0 0 0 0 0 1 0 B C @ A 0 0 0 0 0 0 0 0 0 Deformations in AdS/CFT – p.10/30

  11. The deformed dilatation operator Use the notation q i = e iπβ i = r i e iγ i . H su (3) 00 E k +1 + r 2 11 E k +1 + r 2 00 E k +1 22 E k +1 11 E k +1 + r 2 22 E k +1 k,k +1 = E k 2 E k 3 E k + E k + E k 1 E k 11 00 22 00 22 11 − r 1 e − iγ 1 E k 12 E k +1 21 E k +1 10 E k +1 − r 2 e − iγ 2 E k 01 E k +1 − r 1 e iγ 1 E k − r 2 e iγ 2 E k 21 12 01 10 − r 3 e − iγ 3 E k 20 E k +1 02 E k +1 − r 3 e iγ 3 E k 02 20 0 1 0 0 0 0 0 0 0 0 0 B C r 3 e − iγ 3 B C 0 1 0 0 0 0 0 0 B C B C r 2 r 2 e iγ 2 0 0 0 0 0 0 0 B C 3 B C B C r 2 r 3 e iγ 3 0 0 0 0 0 0 0 B C 2 B C H su (3) = B C 0 0 0 0 0 0 0 0 0 B C B C B r 1 e − iγ 1 C 0 0 0 0 0 1 0 0 B C B C r 2 e − iγ 2 B 0 0 0 0 0 1 0 0 C B C B C r 1 e iγ 1 r 2 0 0 0 0 0 0 0 B C 1 @ A 0 0 0 0 0 0 0 0 0 Deformations in AdS/CFT – p.11/30

  12. Integrability? Is the model integrable? • su (2) : Yes, always! [Berenstein, Cherkis] • su (3) : Yes, when r i = 1 [Beisert, Roiban] No, when r 1 = r 2 = r 3 = r , γ 1 = γ 2 = γ 3 = γ [Berenstein, Cherkis] Maybe not when r i � = 1 , γ 1 � = γ 2 � = γ 3 . . . Investigate this! More general: Any Hamiltonian with U (1) 3 symmetry H k,k +1 H 00 00 E k 00 E k +1 + H 11 11 E k 11 E k +1 + H 22 22 E k 22 E k +1 + H 12 12 E k 11 E k +1 + H 21 12 E k 12 E k +1 = 00 11 22 22 21 H 12 21 E k 21 E k +1 + H 21 21 E k 22 E k +1 + H 01 10 E k 10 E k +1 + H 10 10 E k 11 E k +1 + H 01 01 E k 00 E k +1 + 12 11 01 00 11 H 10 01 E k 01 E k +1 + H 02 20 E k 20 E k +1 + H 20 20 E 22 E 00 + H 02 02 E 00 E 22 + H 20 + 02 E 02 E 20 , 10 02 Deformations in AdS/CFT – p.12/30

  13. A general Hamiltonian 0 1 H 00 0 0 0 0 0 0 0 0 00 B C H 01 H 01 B 0 0 0 0 0 0 0 C 01 10 B C B C H 02 H 02 0 0 0 0 0 0 0 B C 02 20 B C B C H 10 H 10 0 0 0 0 0 0 0 B C 01 10 B C B C H 11 H = . 0 0 0 0 0 0 0 0 B C 11 B C H 12 H 12 B C 0 0 0 0 0 0 0 B C 12 21 B C H 20 H 20 B C 0 0 0 0 0 0 0 02 20 B C B C H 21 H 21 0 0 0 0 0 0 0 B C 12 21 @ A H 22 0 0 0 0 0 0 0 0 22 21 ) ∗ = r 1 e iγ 1 , H 02 02 ) ∗ = r 2 e iγ 2 , H 10 Require hermiticity: H 21 12 = ( H 12 20 = ( H 20 01 = 10 ) ∗ = r 3 e iγ 3 , diagonal terms real. Not all parameters are physical, we are ( H 01 allowed to rescale and add/subtract number operators. ⇒ 9 physical parameters When is this model integrable? Deformations in AdS/CFT – p.13/30

  14. Investigating integrability Integrability ⇔ Factorized scattering Consider an N particle process: scattering occurs as a sequence of two-particle scatterings, in the case of 3 particles: k2 k3 k1 j3 j2 j1 i3 i1 i2 Alternative more technical definition: Existence of an R-matrix that satisfies the Yang-Baxter equation R 12 R 13 R 23 = R 23 R 13 R 12 leads to an infinite number of commuting charges. Deformations in AdS/CFT – p.14/30

  15. Investigating integrability Yang-Baxter equation represented graphically k2 k2 k3 k1 k1 j3 k3 j1 j2 X X = j2 j1 i3 j 1 ,j 2 ,j 3 j 1 ,j 2 ,j 3 j3 i1 i3 i1 i2 i2 R j 1 j 2 i 1 i 2 ( u − v ) R k 1 j 3 j 1 i 3 ( u ) R k 2 k 3 j 2 j 3 ( v ) = R j 2 j 3 i 2 i 3 ( v ) R j 1 k 3 i 1 j 3 ( u ) R k 1 k 2 j 1 j 2 ( u − v ) Factorized scattering leads to a similar relation for the S-matrix S j 1 j 2 i 1 i 2 ( p i 1 , p i 2 ) S k 1 j 3 j 1 i 3 ( p i 1 , p i 3 ) S k 2 k 3 j 2 j 3 ( p i 2 , p i 3 ) = S j 2 j 3 i 2 i 3 ( p i 1 , p i 2 ) S j 1 k 3 i 1 j 3 ( p i 1 , p i 3 ) S k 1 k 2 j 1 j 2 ( p i 2 , p i 3 ) Deformations in AdS/CFT – p.15/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend