integrable dispersive chains
play

Integrable Dispersive Chains Maxim V. Pavlov Lebedev Institute of - PowerPoint PPT Presentation

Integrable Dispersive Chains Maxim V. Pavlov Lebedev Institute of Physics 13.02.2014 Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 1 / 19 The General Problem. The Korteweg de Vries equation The Korteweg de Vries equation


  1. Integrable Dispersive Chains Maxim V. Pavlov Lebedev Institute of Physics 13.02.2014 Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 1 / 19

  2. The General Problem. The Korteweg de Vries equation The Korteweg de Vries equation is associated with the linear Schrödinger equation ψ xx = ( λ + u ) ψ . The function ψ ( x , t , λ ) satisfies the pair of linear equations in partial derivatives ψ t = a ψ x − 1 ψ xx = u ψ , 2 a x ψ . Then the compatibility condition ( ψ xx ) t = ( ψ t ) xx yields the relationship � � − 1 2 ∂ 3 u t = x + 2 u ∂ x + u x a between functions u ( x , t , λ ) and a ( x , t , λ ) . Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 2 / 19

  3. The General Problem. The Korteweg de Vries equation The Korteweg de Vries equation is associated with the linear Schrödinger equation ψ xx = ( λ + u ) ψ . The function ψ ( x , t , λ ) satisfies the pair of linear equations in partial derivatives ψ t = a ψ x − 1 ψ xx = u ψ , 2 a x ψ . Then the compatibility condition ( ψ xx ) t = ( ψ t ) xx yields the relationship � � − 1 2 ∂ 3 u t = x + 2 u ∂ x + u x a between functions u ( x , t , λ ) and a ( x , t , λ ) . If we choose the linear dependences u ( x , t , λ ) = λ + u 1 ( x , t ) and a ( x , t , λ ) = λ + a 1 ( x , t ) , we obtain nothing but the famous Korteweg de Vries equation t = 1 xxx − 3 u 1 4 u 1 2 u 1 u 1 x , Pavlov (FIAN & MSU) where a 1 = − 1 u 1 . Integrable Dispersive Chains 13.02.2014 2 / 19

  4. The General Problem. The Kaup—Boussinesq system Again we consider the relationship � � − 1 2 ∂ 3 u t = x + 2 u ∂ x + u x a between functions u ( x , t , λ ) and a ( x , t , λ ) . Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 3 / 19

  5. The General Problem. The Kaup—Boussinesq system Again we consider the relationship � � − 1 2 ∂ 3 u t = x + 2 u ∂ x + u x a between functions u ( x , t , λ ) and a ( x , t , λ ) . If we choose the quadratic dependence u ( x , t , λ ) = λ 2 + λ u 1 ( x , t ) + u 2 ( x , t ) and again the linear dependence a ( x , t , λ ) = λ + a 1 ( x , t ) , we obtain nothing but the well-known Kaup—Boussinesq system x − 3 t = 1 x − 1 u 1 t = u 2 2 u 1 u 1 u 2 4 u 1 xxx − u 2 u 1 2 u 1 u 2 x , x . Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 3 / 19

  6. The General Problem. The Antonowicz—Fordy Construction Again we consider the relationship � � − 1 2 ∂ 3 u t = x + 2 u ∂ x + u x a between functions u ( x , t , λ ) and a ( x , t , λ ) . Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 4 / 19

  7. The General Problem. The Antonowicz—Fordy Construction Again we consider the relationship � � − 1 2 ∂ 3 u t = x + 2 u ∂ x + u x a between functions u ( x , t , λ ) and a ( x , t , λ ) . Multi-component rational (with respect to the spectral parameter λ ) generalization ( ǫ k are arbitrary parameters) u ( x , t , λ ) = λ M u 0 ( x , t ) + λ M − 1 u 1 ( x , t ) + ... + u M ( x , t ) ǫ M λ M + ǫ M − 1 λ M − 1 + ... + ǫ 0 The authors considered two main subclasses selected by the conditions: ǫ M = 0 and u 0 = 1 (the so called “Generalized KdV type systems”); ǫ M = 0 but u 1 = 1 (the so called “Generalized Harry Dym type systems”). In another paper written together with M. Marvan we found a third narrow subclass determined by a sole restriction u M = 0. Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 4 / 19

  8. Integrable Dispersive Chains Now we consider ( M = 1 , 2 , ... ) � � 1 + u 1 ( x , t ) + u 2 ( x , t ) + u 3 ( x , t ) u ( x , t , λ ) = λ M + ... , λ 2 λ 3 λ where u k are infinitely many unknown functions. Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 5 / 19

  9. Integrable Dispersive Chains Now we consider ( M = 1 , 2 , ... ) � � 1 + u 1 ( x , t ) + u 2 ( x , t ) + u 3 ( x , t ) u ( x , t , λ ) = λ M + ... , λ 2 λ 3 λ where u k are infinitely many unknown functions. The substitution and the linear dependence a ( 1 ) = λ + a 1 ( x , t ) into � � − 1 2 ∂ 3 u t = x + 2 u ∂ x + u x a yields M th integrable dispersive chain − 1 x + 1 u k t = u k + 1 2 u 1 u k x − u k u 1 4 δ k M u 1 xxx , k = 1 , 2 , ..., x where δ k M is the Kronecker delta and a 1 = − 1 2 u 1 . Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 5 / 19

  10. Higher Commuting Flows Higher commuting flows of the Korteweg de Vries hierarchy are determined by the linear spectral system ψ t k = a ( k ) ψ x − 1 2 a ( k ) ψ xx = ( λ + u 1 ) ψ , x ψ , where k a ( k ) = λ k + a m λ k − m , ∑ m = 1 and functions a m and u 1 depend on the “space” variable x and infinitely many extra “time” variables t k (obviously, t ≡ t 1 ). Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 6 / 19

  11. Higher Commuting Flows Higher commuting flows of the Korteweg de Vries hierarchy are determined by the linear spectral system ψ t k = a ( k ) ψ x − 1 2 a ( k ) ψ xx = ( λ + u 1 ) ψ , x ψ , where k a ( k ) = λ k + a m λ k − m , ∑ m = 1 and functions a m and u 1 depend on the “space” variable x and infinitely many extra “time” variables t k (obviously, t ≡ t 1 ). Substitution � � 1 + u 1 ( x , t ) + u 2 ( x , t ) + u 3 ( x , t ) u ( x , t , λ ) = λ M + ... , λ 2 λ 3 λ into � � − 1 2 ∂ 3 u t = x + 2 u ∂ x + u x a Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 6 / 19

  12. Higher Commuting Flows leads to higher commuting flows (here we define a 0 = 1) � � s u k + m ∂ x + ∂ x u k + m − 1 u k 2 δ k + m ∂ 3 ∑ t s = a s − m , s = 1 , 2 , ..., M x m = 0 Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 7 / 19

  13. Higher Commuting Flows leads to higher commuting flows (here we define a 0 = 1) � � s u k + m ∂ x + ∂ x u k + m − 1 u k 2 δ k + m ∂ 3 ∑ t s = a s − m , s = 1 , 2 , ..., M x m = 0 where all coefficients a m can be found iteratively from the linear system (here we define u 0 = 1 and u − m = 0 for all m = 1 , 2 , ... ) � � s u m − k ∂ x + ∂ x u m − k − 1 2 δ m − k ∂ 3 ∑ a s − m = 0 , k = 0 , 1 , ..., s − 1 . x M m = 0 For instance, a 1 = − 1 a 2 = − 1 2 u 2 + 3 8 ( u 1 ) 2 − 1 a 3 = − 1 2 u 3 + 3 2 u 1 , 8 δ 1 M u 1 4 u 1 u 2 xx , − 5 16 ( u 1 ) 3 + 1 xx ) − 1 x ) 2 − u 1 32 δ 1 M ( 10 u 1 u 1 xx + 5 ( u 1 xxxx − 4 u 2 8 δ 2 M u 1 xx , ... Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 7 / 19

  14. Higher Commuting Flows Thus all higher commuting flows are written also in an evolution form. For instance, the first commuting flow to − 1 x + 1 t = u k + 1 4 δ k u k 2 u 1 u k x − u k u 1 M u 1 xxx , k = 1 , 2 , ..., x is (here we identify y ≡ t 2 ) � � − 1 − 1 2 u 2 + 3 8 ( u 1 ) 2 − 1 u k y = u k + 2 2 u 1 u k + 1 8 δ 1 M u 1 u k x − u k + 1 u 1 + x x xx x � � x + 3 x − 1 + 1 + u k − u 2 2 u 1 u 1 4 δ 1 M u 1 4 δ k + 1 u 1 xxx xxx M � � + 1 xxx − 3 4 [( u 1 ) 2 ] xxx + 1 4 δ k u 2 4 δ 1 M u 1 . M xxxxx Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 8 / 19

  15. Local Hamiltonian Structures A hierarchy of integrable dispersive chains − 1 x + 1 u k t = u k + 1 2 u 1 u k x − u k u 1 4 δ k M u 1 k = 1 , 2 , ..., xxx , x possesses infinitely many local Hamiltonian structures: � � δ H s + 1 s + 1 u k + m − 1 ∂ x + ∂ x u k + m − 1 − 1 u k 2 δ k + m − 1 ∂ 3 ∑ t s = δ u m ; M x m = 1 δ H s + 2 u 1 t s = − 2 ∂ x δ u 1 , � � δ H s + 2 s + 2 u k + m − 2 ∂ x + ∂ x u k + m − 2 − 1 u k 2 δ k + m − 2 ∂ 3 ∑ t s = δ u m ; x M m = 2 � � δ H s + 3 δ H s + 3 δ H s + 3 u 1 ∂ x + ∂ x u 1 -1 2 δ 1 u 1 δ u 2 , u 2 M ∂ 3 t s = -2 ∂ x t s = -2 ∂ x δ u 1 - δ u 2 , x � � δ H s + 3 s + 3 u k + m − 3 ∂ x + ∂ x u k + m − 3 − 1 2 δ k + m − 3 u k ∑ ∂ 3 t s = δ u m . M x m = 3 Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 9 / 19

  16. Conservation Laws All higher local conservation laws can be found from the observation a m = δ H m + s , m = 0 , 1 , ...; s = 1 , 2 , ... δ u s In such a case all Hamiltonians can be found from above variation derivatives, for instance � � � � u 2 − 1 u 1 dx , 4 ( u 1 ) 2 H 1 = H 2 = dx , � � � u 3 − 1 2 u 1 u 2 + 1 8 ( u 1 ) 3 + 1 16 δ 1 M ( u 1 x ) 2 H 3 = dx , � � u 4 − 1 2 u 1 u 3 − 1 4 ( u 2 ) 2 + 3 8 ( u 1 ) 2 u 2 − 5 64 ( u 1 ) 4 H 4 = � � � + 1 x ) 2 − 1 + 1 xx ) 2 + 4 u 1 32 δ 1 − 5 u 1 ( u 1 2 ( u 1 x u 2 16 δ 2 M ( u 1 x ) 2 dx , ... M x Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 10 / 19

  17. Elementary Reductions Obviously for any natural number N � M the reduction u N + 1 = 0 of M th dispersive chain − 1 x + 1 u k t = u k + 1 2 u 1 u k x − u k u 1 4 δ k M u 1 xxx , k = 1 , 2 , ..., x leads to N component integrable dispersive systems: Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 11 / 19

  18. Elementary Reductions Obviously for any natural number N � M the reduction u N + 1 = 0 of M th dispersive chain − 1 x + 1 u k t = u k + 1 2 u 1 u k x − u k u 1 4 δ k M u 1 xxx , k = 1 , 2 , ..., x leads to N component integrable dispersive systems: 1 . N = M = 1, the Korteweg de Vries equation; Pavlov (FIAN & MSU) Integrable Dispersive Chains 13.02.2014 11 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend