on liouville integrable defects
play

On Liouville integrable defects Anastasia Doikou University of - PowerPoint PPT Presentation

On Liouville integrable defects Anastasia Doikou University of Patras Quantum Integrable Systems and Geometry Olhao, September 2012 Work in collaboration with J. Avan: arXiv:1110.4728 (JHEP 01 (2012) 040) and arXiv:1205.1661 Anastasia Doikou


  1. On Liouville integrable defects Anastasia Doikou University of Patras Quantum Integrable Systems and Geometry Olhao, September 2012 Work in collaboration with J. Avan: arXiv:1110.4728 (JHEP 01 (2012) 040) and arXiv:1205.1661 Anastasia Doikou On Liouville integrable defects

  2. General frame Integrable defects (quantum level) impose severe constraints on relevant algebraic and physical quantities (e.g. scattering amplitudes) ( Delfino, Mussardo, Simonetti, Konic, LeClair, ....) In discrete integrable systems there is a systematic description of local defects based on QISM In integrable field theories a defect is introduced as discontinuity plus gluing conditions ( Bowcock, Corrigan, Zambon,... ), integrability issue not systematically addressed; other attempts ( Caudrelier, Kundu, Habibulin,... ) We developed a systematic algebraic means to investigate integrable filed theories with point like defects. Integrability is ensured by construction Anastasia Doikou On Liouville integrable defects

  3. Outline The general frame 1 The L matrix The classical quadratic algebra Local integrals of motion, and relevant Lax pairs for NLS and 2 sine-Gordon models Discrete theories and consistent continuum limits 3 Discussion and future perspectives 4 Anastasia Doikou On Liouville integrable defects

  4. Classical Integrability The Lax pair U , V ; the linear auxiliary problem ( e.g. Faddeev-Takhtajan ): ∂ Ψ( x , t ) = U ( x , t ) Ψ( x , t ) ∂ x ∂ Ψ( x , t ) = V ( x , t ) Ψ( x , t ) ∂ t Compatibility condition leads to Zero curvature condition � � ˙ U ( x , t ) − V ′ ( x , t ) + U ( x , t ) , V ( x , t ) = 0 Gives rise to the equations of motion of the system. Anastasia Doikou On Liouville integrable defects

  5. The monodromy matrix The continuum monodromy matrix � � y � T ( x , y , λ ) = P exp dx U ( x ) x Solution of the differential equation ∂ T ( x , y ) = U ( x , t ) T ( x , y ) ∂ x Anastasia Doikou On Liouville integrable defects

  6. The monodromy matrix The continuum monodromy matrix � � y � T ( x , y , λ ) = P exp dx U ( x ) x Solution of the differential equation ∂ T ( x , y ) = U ( x , t ) T ( x , y ) ∂ x U obeys linear classical algebra, T satisfies the: Classical algebra � � � � T a ( λ ) , T b ( µ ) = r ab ( λ − µ ) , T a ( λ ) T b ( µ ) The classical r -matrix satisfies the CYBE ( Sklyanin, Semenov-Tian-Shansky ) [ r 12 , r 13 ] + [ r 12 , r 23 ] + [ r 13 , r 23 ] = 0 . Anastasia Doikou On Liouville integrable defects

  7. Classical integrability The monodromy matrix T satisfies the classical algebra, thus The transfer matrix t ( λ ) = Tr T ( λ ) provides the charges in involution; � � t ( λ ) , t ( µ ) = 0 integrability ensured by construction. ln t ( λ ) → local integrals of motion Anastasia Doikou On Liouville integrable defects

  8. The defect frame The key object , modified monodromy: Defect monodromy matrix T ( L , − L , λ ) = T + ( L , x 0 , λ ) ˜ L ( x 0 , λ ) T − ( x 0 , − L , λ ) where we define � � T ± = P exp � dx U ± ( x ) The defect ˜ L matrix obeys � � � � L a ( λ 1 ) , ˜ ˜ L b ( λ 2 ) = r ab ( λ 1 − λ 2 ) , L a ( λ 1 ) L b ( λ 2 ) T ± satisfy the classical algebra, thus T obeys the same algebra, integrability also ensured Anastasia Doikou On Liouville integrable defects

  9. The defect frame Auxiliary linear problem for U ± , V ± for the defect theory: ∂ Ψ( x , t ) = U ± Ψ( x , t ) ∂ x ∂ Ψ( x , t ) = V ± Ψ( x , t ) ∂ t The corresponding Zero curvature condition � � U ± ( x , t ) − V ± ′ ( x , t ) + ˙ U ± ( x , t ) , V ± ( x , t ) = 0 x � = x 0 Anastasia Doikou On Liouville integrable defects

  10. The defect frame Auxiliary linear problem for U ± , V ± for the defect theory: ∂ Ψ( x , t ) = U ± Ψ( x , t ) ∂ x ∂ Ψ( x , t ) = V ± Ψ( x , t ) ∂ t The corresponding Zero curvature condition � � U ± ( x , t ) − V ± ′ ( x , t ) + ˙ U ± ( x , t ) , V ± ( x , t ) = 0 x � = x 0 On the defect point Defect zero curvature condition d ˜ L ( x 0 ) = ˜ V + ( x 0 )˜ L ( x 0 ) − ˜ L ( x 0 )˜ V − ( x 0 ) dt Anastasia Doikou On Liouville integrable defects

  11. The NLS model with defect The U ± -operator for the NLS model: ¯ � � � ψ ± � U ± = λ 1 0 0 + . ψ ± 0 − 1 0 2 From the classical algebra for U : Poisson structure � � � � ψ ± ( x ) , ¯ ψ ∓ ( x ) , ¯ ψ ± ( y ) ψ ± ( y ) = δ ( x − y ) , = 0 . The classical r -matrix is the Yangian: r ( λ ) = 1 λ P ( Yang ) P ( a ⊗ b ) = b ⊗ a . Anastasia Doikou On Liouville integrable defects

  12. The NLS model with defect The generic defect ˜ L operator � α ( x 0 ) � β ( x 0 ) ˜ L ( x 0 ) = λ I + . γ ( x 0 ) δ ( x 0 ) From the quadratic classical algebra for ˜ L ( sl 2 algebra): � � α ( x 0 ) , β ( x 0 ) = β ( x 0 ) � � α ( x 0 ) , γ ( x 0 ) = − γ ( x 0 ) � � β ( x 0 ) , γ ( x 0 ) = 2 α ( x 0 ) Establish the Poisson structure! Relevant studies: ( Corrigan-Zambon ) Anastasia Doikou On Liouville integrable defects

  13. The NLS model: local IM First recall that: ∂ T ± ( x , y , t ) = U ± ( x , t ) T ± ( x , y , t ) ∂ x Based on the latter consider the decomposition ansatz: T ± ( x , y ; λ ) = (1 + W ± ( x )) e Z ± ( x , y ) (1 + W ± ( y )) − 1 W ± anti-diagonal, Z ± diagonal. Also, ∞ ∞ W ± ( n ) Z ± ( n ) W ± = Z ± = � � , λ n λ n n =0 n = − 1 Substituting the ansatz to the differential equation above identify W ± ( n ) , Z ± ( n ) matrices. Anastasia Doikou On Liouville integrable defects

  14. The NLS model: local IM Substitution leads to Riccati-type : Differential equations dW ± + W ± U d − U d W ± + W ± U ± a W ± − U ± a = 0 dx dZ ± = U d + U ± a W ± dx Solving the latter one identifies the W ± ( n ) , Z ± ( n ) , hence the charges in involution. Similar differential equations arise within the inverse scattering frame. Anastasia Doikou On Liouville integrable defects

  15. The NLS model: local IM The generating function G ( λ ) = ln tr ( T + ( λ ) ˜ L ( λ, x 0 ) T − ( λ )) which turns to, via the decomposition: Generating function 11 ( λ ) + ln[(1 + W + ( x 0 )) − 1 ˜ G ( λ ) = Z + 11 ( λ ) + Z − L ( x 0 )(1 + W − ( x 0 ))] 11 Also, ∞ H ( n ) � G ( λ ) = λ n n =0 Anastasia Doikou On Liouville integrable defects

  16. The NLS model: local IM The first three integrals of motion: The number of particles � x − � L 0 H (1) = dx ψ − ( x ) ¯ dx ψ + ( x ) ¯ ψ − ( x ) + ψ + ( x ) + α ( x 0 ) x + − L 0 The momentum � x − � L 0 ψ − ( x ) ψ − ′ ( x ) − ψ + ( x ) ψ + ′ ( x ) dx ¯ dx ¯ H (2) = − x + − L 0 ψ + + βψ − − α 2 ψ + ψ + + ¯ ψ + ψ − + γ ¯ ¯ − 2 Anastasia Doikou On Liouville integrable defects

  17. The NLS model: local IM The Hamiltonian � L � x − ψ + ψ + ′′ + | ψ + | 4 � ψ − ψ − ′′ + | ψ − | 4 � 0 � � ¯ ¯ H (3) = dx + dx x + − L 0 ψ + ′ ψ − + α 3 ψ + ′ − βψ − ′ + ¯ ψ + ψ + ) ′ + γ ¯ ( ¯ + 3 ψ + ψ − ′ − α � ψ + + βψ − + 2 ¯ ψ + ψ − � ¯ γ ¯ − Anastasia Doikou On Liouville integrable defects

  18. The NLS model: local IM The Hamiltonian � L � x − ψ + ψ + ′′ + | ψ + | 4 � ψ − ψ − ′′ + | ψ − | 4 � 0 � � ¯ ¯ H (3) = dx + dx x + − L 0 ψ + ′ ψ − + α 3 ψ + ′ − βψ − ′ + ¯ ψ + ψ + ) ′ + γ ¯ ( ¯ + 3 ψ + ψ − ′ − α � ψ + + βψ − + 2 ¯ ψ + ψ − � ¯ γ ¯ − By construction (formally), and also explicitly checked: Involution � � � � � � H 1 , H 2 = H 1 , H 3 = H 2 , H 3 = 0 No sewing constraints arise or used so far, off-shell integrability. Anastasia Doikou On Liouville integrable defects

  19. The NLS model: Lax pair Next step, derive time component of the Lax pair V , and sewing conditions. Explicit expressions ( Faddeev-Takhtajan, Avan-Doikou ): � � a ( x , x 0 )˜ V + ( x , λ, µ ) = t − 1 tr a T + a ( L , x ) r ab ( λ − µ ) T + L a ( x 0 ) T − a ( x 0 , − L ) � � a ( L , x 0 )˜ V − ( x , λ, µ ) = t − 1 tr a T + L a ( x 0 ) T − a ( x 0 , x ) r ab ( λ − µ ) T − a ( x , − L ) � � ˜ a ( L , x 0 ) r ab ( λ − µ )˜ V + ( x 0 , λ, µ ) = t − 1 tr a T + L a ( x 0 ) T − a ( x 0 , − L ) � � ˜ a ( L , x 0 )˜ V − ( x 0 , λ, µ ) = t − 1 tr a T + L a ( x 0 ) r ab ( λ − µ ) T − a ( x 0 , − L ) . Anastasia Doikou On Liouville integrable defects

  20. The NLS model: Lax pair For the left and right bulk theories, and the defect point: � 1 � 0 V ± (1) ( µ, x ) = 0 0 ¯ � ψ − ( x ) � µ V − (2) ( µ, x ) = ψ − ( x ) 0 ¯ � ψ + ( x ) � µ V +(2) ( µ, x ) = ψ + ( x ) 0 ¯ � ψ + ( x 0 ) + β ( x 0 ) � µ ˜ V − (2) ( µ, x 0 ) = ψ − ( x 0 ) 0 ¯ � ψ + ( x 0 ) � µ ˜ V +(2) ( µ, x 0 ) = γ ( x 0 ) + ψ − ( x 0 ) 0 Anastasia Doikou On Liouville integrable defects

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend