liouville theory and log correlated processes
play

Liouville theory and log-correlated processes Xiangyu Cao (LPTMS, - PowerPoint PPT Presentation

Liouville & log-REM Liouville theory and log-correlated processes Xiangyu Cao (LPTMS, Orsay) Random Geometry & Physics, 10 / 2016 Liouville & log-REM c 25 pure Liouville theory and multi-fractality in log-correlated processes


  1. Liouville & log-REM Liouville theory and log-correlated processes Xiangyu Cao (LPTMS, Orsay) Random Geometry & Physics, 10 / 2016

  2. Liouville & log-REM c ≥ 25 pure Liouville theory and multi-fractality in log-correlated processes Collaborators: Outline: ◮ Pierre Le Doussal ENS ◮ c ≥ 25 pure Liouville & 2d GFF disordered stat. ϕ ◮ Alberto Rosso Orsay ◮ discrete terms in Liouville. ◮ Raoul Santachiara Orsay ⇔ Termination point transition Thanks: in disordered systems. ◮ Yan Fyodorov ◮ R´ emi Rhodes ◮ Sylvain Ribault ◮ Vincent Vargas

  3. Liouville & log-REM Liouville and 2D GFF c ≥ 25 pure Liouville in disordered stat. ϕ Connection to pure Liouville (96) Freezing & 2D GFF (96, earlier: Derrida-Spohn, David) Full-fledged freezing (98-00) Rigorous renewal (see also Duplantier & She ffi eld, . . . )

  4. Liouville & log-REM Liouville and 2D GFF Gibbs measure of 2D GFF + log potential p β ( z ) = 1 Ze − β ( φ ( z ) + U ( z )) , β = 1 / T φ ( z ) + U ( z ) 24 φ ( z ) φ ( w ) = − 4 ln | z − w | (2d GFF) 3 18 2 k 12 � 1 U ( z ) = 4 a j ln | z − w j | , 6 Im ( z ) 0 j = 1 0 − 1 − 6  β β < 1  Q = b + b − 1 , b = min(1 , β ) =  − 12 − 2   1 β ≥ 1  − 18  − 3 − 24 − 4 − 3 − 2 − 1 0 1 2 3 4 Re ( z ) k = 2 , w 1 , 2 = 0 , 1 , a 1 , 2 / Q = . 2 , . 4

  5. Liouville & log-REM Liouville and 2D GFF correlation of p ( z ) = pure Liouville c ≥ 25 � ℓ ℓ k � β< 1 � � � p q i β ( z i ) V q i β ( z i ) V a j ( w j ) × V a ∞ ( ∞ ) ∝ i = 1 i = 1 j = 1 LFT( c = 1 + 6 Q 2 )  a ∞ = Q − � k j = 1 a j ⇔ Q − a ∞ = � k j = 1 a j     β< 1  if Q = b + b − 1 , b = min(1 , β )  = β      a j , q i meet Seiberg bounds (see next slide)  β> 1 β > 1 ⇒ freezing ( b = 1 ) + 1RSB (spin-glass physics, UV origin) β> 1 β> 1 = Tp 1 ( z 1 ) p 1 ( z 2 ) + (1 − T ) δ 2 ( z 1 − z 2 ) . . . = p 1 ( z ) , p β ( z 1 ) p β ( z 2 ) p β ( z )

  6. Liouville & log-REM Liouville and 2D GFF Seiberg bounds � ℓ k � � � = µ − s / b Z − s / b . . . V q i β ( z i ) V a j ( w j ) × V a ∞ ( ∞ ) (1) i = 1 j = 1 LFT √ s = � ℓ i = 1 q i b + � k j = 1 a j + a ∞ − Q = � ℓ i = 1 q i b > 0 ( q i > 0); ◮ (1) by conformal bootstrap. [Zamolodchikov, Zamolodchikov, Belavin, . . . ] √ a j < Q / 2 ⇔ no binding, a ∞ < Q / 2 ⇔ confinement ◮ q i β < Q / 2 ⇔ away from termination point transition .

  7. Liouville & log-REM Discrete terms Liouville by bootstrap: continuous & discrete U ( z ) = 4 a 1 ln | z | + 4 a 2 ln | z − 1 | 10 3 LFT a 1 b LFT(t) 10 2 � only � p β ( z ) ∝ d α α num. Q 2 + i R P 10 1 a 2 a ∞ 10 0 � 2 π i Res[ . . . ; α ] + β , a 1 Q , a 2 Q = 0.4, 0.1, 0.45 α ∈ D 0.0 0.2 0.4 0.6 0.8 1.0 x a ∞ = b + b − 1 − a 1 − a 2 , b = min(1 , β ) Discrete terms ⇔ s channel = t channel = numerics [A.A. Belavin, A.B. Zamolodchikov, Theor.Math.Phys. 147 (2006) 729-754] See also Konstantin Aleshkin’s talk tomorrow

  8. Liouville & log-REM Discrete terms Liouville fusion / OPE: continuous & discrete Q Q Q α 1 + α 2 < Q /2 α 1 + α 2 = Q /2 α 1 + α 2 > Q /2 2 + i R 2 + i R 2 + i R [ α 1 ] + [ α 2 ] [ α 1 ] + [ α 2 ] [ α 1 ] + [ α 2 ] [ α 1 + α 2 ] + . . . � � [ Q /2 + i P ] P 2 dP [ Q /2 + i P ] dP Goal: interpret as termination point transition [A.A. Belavin, A.B. Zamolodchikov, Theor.Math.Phys. 147 (2006) 729-754] See also : Ribault, Santachiara arXiv:1503.02067, Ribault arXiv:1406.4290, Ex. 3.3 Konstantin Aleshkin’s talk tomorrow

  9. Liouville & log-REM Multi-fractality Multi-fractal spectrum 10 − 1 10 − 2 Set U ( z ) = 0, cut domain into M boxes: 10 − 3 10 − 4 � 10 − 5 p β ( z ) d 2 z , i = 1 , . . . , M → + ∞ . p i = 10 − 6 10 − 7 box i 10 − 8 def Num. of p i ∈ [ M − α , M − ( α + d α ) ] = M f ( α ) d α 10 − 9 10 − 10 For 2D GFF (general log-correlated) , f ( α ) b = β < 1 f ( α ) = 4( α + − α )( α − α − ) + o (1) ( α + − α − ) 2 α − = (1 − b ) 2 , b = min(1 , β ) , α α + α − = ( 1 − b ) 2 α + = α − + 4 β .

  10. Liouville & log-REM Multi-fractality Inverse participation ratios (IPR) M � α q − f ( α ) � , q > 0 . def � i ∼ M − τ ( q ) , τ ( q ) = min p q P q = α ∈ I i = 1 Annealed: P q averaged over all samples, Quenched: I = [0 , + ∞ ) ⇒ termination point transition . one big sample, I = [ α − , α + ] f ( α ) f ( α ) α α q c = f ′ ( α − ) termination point  ∆ q β − 1 q β < 1   τ ( q ) =  q (1 − b ) 2  q β ≥ 1   ∆ q β − 1 q β < Q / 2    τ ( q ) =   q β ≥ Q / 2 ∆ Q / 2 − 1   ∆ α = α ( Q − α ) , Q = b + b − 1 , b = min(1 , β )

  11. Liouville & log-REM Multi-fractality Log corrections in annealed IPR b = min(1 , β ) , Q = b + b − 1 , ∆ α = α ( Q − α ) . M 1 − ∆ q β  q β < Q / 2    β< 1  M 1 − ∆ Q / 2 ln − 1  2 M P q ∼ q β = Q / 2 (2)     M 1 − ∆ Q / 2 ln − 3  2 M  q β > Q / 2  ◮ Nb : ln − 1 + x � M − P 2 P x d P comes from continuous spectrum 2 M ∼ integral. No log-CFT. ◮ Fyodorov, arxiv / 0903.2502, uncorrelated potential: same exponent, di ff erent log corrections (eq. 9). Nb. He used the term pre-freezing. ◮ β > 1 , q β > Q / 2 = 1 ⇒ P q ∼ O (1), no more log.

  12. Liouville & log-REM Other applications Joint occupation probability 2 particles ( z 1 , 2 ) in 1 potential, distribution of z = z 1 − z 2 ◮ averaged over all potential samples ◮ | z 1 − z 2 | ≪ | z 1 − w j | ⇒ U ∼ const ⇒ local translation invariance | z | − 4 β 2 β < 3 − 1  − exponent 2     | z | − 4 / 3 ln − 1 β = 3 − 1  β = 1 2 | 1 / z |   2   P β ( z ) ∼  | z | − 3 + β 2 + β − 2  ln − 3 β ∈ (3 − 1 2 | 1 / z | 2 , 1]   2   β = 3 − 1   2 c 1 | z | − 2 ln − 3  2 | 1 / z | + c 0 δ 2 ( z )  β > 1  note: β = 3 − 1 2 ⇔ q β = Q / 2 for q = 2 β At zero- T , distribution of 1st & 2nd minima positions P ( ξ = ξ 1 − ξ 2 ) ξ → 0 1 | ξ | − 2 ln − 3 ∼ c ′ 2 | 1 /ξ | + c ′ 0 δ 2 ( ξ ) δ comes from freezing / 1RSB in β > 1 Again: log’s come from continuous spectrum. No log-CFT.

  13. Liouville & log-REM Other applications Directed polymers on disordered Cayley tree Hierarchical cousin of 2D GFF:  ǫ ( 3, 2 ) i.i.d. random i = 1 ǫ ( x i , i ) , ǫ ( x , i ) � e − β � t   Z =  ǫ ( 2, 1 ) s.t. β c = 1    ( x i ) t ǫ ( 1, 2 ) i = 1 distance � overlap q ∈ [0 , 1] . ǫ ( − 1, 2 ) ǫ ( − 2, 1 ) e (2 β 2 − 1) tq t β < 3 − 1  ǫ ( − 3, 2 ) 2     e − qt / 3 q − 1 1 β = 3 − 1 2 t  t = 0 qt = 3 t = 5  2 2   P β ( q ) ∼  [Derrida-Spohn, Arguin et.al ] : e − ( β − β − 1 ) 2 tq  4 t − 1 2 q − 3 β ∈ (3 − 1 2 , 1)  2    t →∞  = m δ ( q ) + 1 − m δ (1 − q ) .  P β ( q ) t − 1 2 q − 3  β ≥ 1 , q ≪ 1  2 m = min(1 , 1 /β ) translation: qt = − 2 log 2 | z | , t < ∞ , β ≥ 1: [Derrida etal 1607.06610] t = 2 log 2 ( R / a )

  14. Liouville & log-REM Other applications Conclusion ◮ Discrete terms ⇔ termination point transition. ◮ Continuous spectrum ⇒ 3 2 log corrections in β < 1 phase. Similar applications: ◮ p β ( z → 0) with U ( z ) = a ln | z | + . . . . 10 − 1 10 − 2 ◮ The case a ≥ Q / 2 (bound phase). 10 − 3 10 − 4 Puzzles: 10 − 5 ◮ Some issues in β ≥ 1 phase. 10 − 6 10 − 7 ◮ Avoid freezing ? 10 − 8 ◮ Extend to c ≤ 1 ? 10 − 9 10 − 10

  15. Liouville & log-REM Appendices Charge at z = ∞ ⇔ charges at z � ∞ → − �� � ∇ U V ... ( . . . ) × V a ∞ ( ∞ ) i , j LFT = µ ∗ Z ∗ � e ∗ φ ( ∗ ) × e ( Q − a ∞ ) φ ( ∞ ) , z ≫∀ w j φ ( z ) + � k j = 1 4 a j ln | z − w j | −→ � k j = 1 4 a j ln | z | = 4( Q − a ∞ ) ln | z | n . − → � � ∇ U = 4 π ( Q − a ∞ ). Here U ( z ) = � k | z | = R d � In general | z | < R ∆ U = j = 1 4 a j ln | z − w j | , ∆ U = � 4 π a j δ z , w j point charges. Dilute charges will not give n < ∞ -point Liouville.

  16. Liouville & log-REM Appendices � � V a 1 (0) V a 2 (1) V b ( z ) V a 3 = Q − a 1 − a 2 ( ∞ ) LFT , b = min( β, 1) � Q / 2 + i R + | F ( z | a i , α, b ) | 2 C DOZZ α, a 1 , a 2 C DOZZ = − α, a 3 , b d α � | F ( z | a i , α 0 , b ) | 2 2 π i Res � � C DOZZ α, a 1 , a 2 C DOZZ α, a 3 , b ; α → α 0 + α 0 ∈ D

  17. Liouville & log-REM Appendices Liouville fusion rule: continous and / or discrete See also Konstantin Aleshkin’s talk tomorrow ◮ Discrete terms come from fusion results outside the Liouville spectrum Q / 2 + i R . ◮ When they are present, they dominate OPE s. Sylvain Ribault, arXiv:1406.4290 [A.A. Belavin, A.B. Zamolodchikov, Theor.Math.Phys. 147 (2006) 729-754]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend