bounds on the non real spectrum of indefinite sturm
play

Bounds on the non-real spectrum of indefinite Sturm-Liouville - PowerPoint PPT Presentation

Bounds on the non-real spectrum of indefinite Sturm-Liouville operators Operator Theory in Indefinite Inner Product Spaces Philipp Schmitz Page 1 / 15 Singular indefinite Sturm-Liouville operators Let 1 ( pf ) ( x ) + q ( x ) f (


  1. Bounds on the non-real spectrum of indefinite Sturm-Liouville operators Operator Theory in Indefinite Inner Product Spaces Philipp Schmitz Page 1 / 15

  2. Singular indefinite Sturm-Liouville operators Let 1 − ( pf ′ ) ′ ( x ) + q ( x ) f ( x ) � � ( τ f )( x ) := , x ∈ R r ( x ) with r , 1 p , q ∈ L 1 loc ( R ), p ( x ) > 0 and r ( x ) � = 0 a. e. We define a weighted L 2 -space � � L 2 f : R → C : f measurabel , | f | 2 | r | ∈ L 1 ( R ) | r | ( R ) := with an inner product � [ f , g ] = f ( x ) g ( x ) r ( x ) d x . R We assume, that τ is in the limit point case at ±∞ . Therefore, the maximal operator A : D max → L 2 | r | ( R ) , Af := τ f with | r | ( R ) : f , pf ′ ∈ AC ( R ) , � � f ∈ L 2 τ f ∈ L 2 D max = | r | ( R ) � L 2 � is the only self-adjoint realisation of τ in the Krein space | r | ( R ) , [ · , · ] . Page 2 / 15

  3. Non-real spectrum The operator � − f ′′ − κ ( κ + 1) sech 2 f � Af = sgn( · ) , dom( A ) = D max , κ ∈ N , has non-real spectrum [Behrndt, Katatbeh, Trunk ’09]. Im 65 Re 9900 9900 65 Page 3 / 15

  4. Theorem (Behrndt, Philipp, Trunk ’13) Let − f ′′ + qf � � Af = sgn( · ) dom( A ) = D max , with q ∈ L ∞ ( R ) . Further assume that ess inf q < 0 holds. Then the non-real spectrum of A consists of isolated eigenvalues and is contained in � � � � Σ := λ ∈ C : dist λ, ( − d , d ) ≤ 5 � q � ∞ , | Im λ | ≤ 2 � q � ∞ , where d := − 5 ess inf x ∈ R q ( x ) > 0 . Page 4 / 15

  5. λ ∈ σ p ( A ) \ R Im 2 � q � ∞ λ Σ Re − d d 5 � q � ∞ � � � � Σ := λ ∈ C : dist λ, ( − d , d ) ≤ 5 � q � ∞ , | Im λ | ≤ 2 � q � ∞ , d := − 5 ess inf x ∈ R q ( x ) > 0 Page 5 / 15

  6. Theorem (Behrndt, S., Trunk ’16) Let − f ′′ + qf � � Af = sgn( · ) dom( A ) = D max , with q ∈ L 1 ( R ) . Then the non-real spectrum of A consists only of isolated eigenvalues. For each λ ∈ σ ( A ) \ R the inequality �� − 2 � � 1 | λ | ≤ � q � 2 ≈ 8 . 3255 · � q � 2 1 · ln √ + 1 1 2 + 1 holds. Page 6 / 15

  7. Proof Let λ ∈ C \ R : Af = λ f , f ∈ dom( A ) = D max f ′′ + = − λ f + + qf + on R + f ′′ − = + λ f − + qf − on R − with f + ∈ L 2 ( R + ), f + , f ′ + ∈ AC ( R + ) with f − ∈ L 2 ( R − ), f − , f ′ − ∈ AC ( R − ) and f ′ + (0) = f ′ f + (0) = f − (0) , − (0) Page 7 / 15

  8. Proof Let λ ∈ C \ R : Af = λ f , f ∈ dom( A ) = D max f ′′ + = − λ f + + qf + on R + f ′′ − = + λ f − + qf − on R − with f + ∈ L 2 ( R + ), f + , f ′ + ∈ AC ( R + ) with f − ∈ L 2 ( R − ), f − , f ′ − ∈ AC ( R − ) and f ′ + (0) = f ′ f + (0) = f − (0) , − (0) Page 7 / 15

  9. Proof Let λ ∈ C \ R : Af = λ f , f ∈ dom( A ) = D max f ′′ + = − λ f + + qf + on R + f ′′ − = + λ f − + qf − on R − with f + ∈ L 2 ( R + ), f + , f ′ + ∈ AC ( R + ) with f − ∈ L 2 ( R − ), f − , f ′ − ∈ AC ( R − ) and f ′ + (0) = cf ′ f + (0) = cf − (0) , − (0) , c � = 0 Page 7 / 15

  10. Proof Consider the half-axis operator A + f = − f ′′ + qf A + : D + → L 2 ( R + ) , with the domain f ∈ L 2 ( R + ) : f , f ′ ∈ AC ( R + ) , − f ′′ + qf ∈ L 2 ( R + ) , � � D + = f (0) = 0 . This operator is self-adjoint in the Hilbert space L 2 ( R + ). If f + would satisfy − f ′′ + = − λ f + + qf + and f + (0) = 0, it would be in D + . Then we would have A + f + = λ f + for non-real λ . Hence, f + (0) � = 0. Page 8 / 15

  11. Proof Let λ ∈ C \ R : Af = λ f , f ∈ dom( A ) = D max f ′′ + = − λ f + + qf + on R + f ′′ − = + λ f − + qf − on R − with f + ∈ L 2 ( R + ), f + , f ′ + ∈ AC ( R + ) with f − ∈ L 2 ( R − ), f − , f ′ − ∈ AC ( R − ) and f ′ + (0) = cf ′ f + (0) = cf − (0) , − (0) , c � = 0 Page 9 / 15

  12. Proof Let λ ∈ C \ R : Af = λ f , f ∈ dom( A ) = D max f ′′ − = + λ f − + qf − on R − f ′′ + = − λ f + + qf + on R + with f + ∈ L 2 ( R + ), f + , f ′ + ∈ AC ( R + ) with f − ∈ L 2 ( R − ), f − , f ′ − ∈ AC ( R − ) and f ′ f + (0) = f ′ + (0) − (0) f − (0) Page 9 / 15

  13. Proof WKB-approach [Olver ’73]: Consider f ′′ + = − λ f + + qf + on R + . Let f + be defined as f + ( x ) = e −√− λ x (1 + R + ( x )) , x ∈ R + . Then f + is a solution iff R + is satisfies √ R ′′ − λ R ′ + − + = q (1 + R + ) . Variation of constant leads to the integral equation � ∞ √− λ ( x − s ) � q ( s ) � √ R + ( x ) = 1 − e − λ (1 + R + ( s )) d s , 2 x which admits solution R + with x →∞ R + ( x ) = 0 lim ◮ � � � � − 1, | R ′ � q � 1 + ( x ) | � q � 1 ◮ | R + ( x ) | ≤ exp ≤ exp − 1 � � � | λ | | λ | | λ | Page 10 / 15

  14. Proof WKB-approach [Olver ’73]: Consider f ′′ − = + λ f − + qf − on R − . Let f − be defined by f − ( x ) = e + √ + λ x (1 + R − ( x )) , x ∈ R − . Then f − is a solution iff R − is satisfies √ R ′′ + λ R ′ − + − = q (1 + R − ) . Variation of constant leads to the integral equation 1 − e − 2 √− λ ( x − s ) � q ( s ) � x � R − ( x ) = √ (1 + R − ( s )) d s , 2 λ −∞ which admits solution R − with x →−∞ R − ( x ) = 0 lim ◮ � � � � − 1, | R ′ � q � 1 − ( x ) | � q � 1 ◮ | R − ( x ) | ≤ exp ≤ exp − 1 � � � | λ | | λ | | λ | Page 11 / 15

  15. Proof Hence, we have solutions f ± of f ′′ ± = ∓ λ f ± + qf ± with ◮ f ± ( x ) = e ∓√∓ λ x (1 + R ± ( x )), x ∈ R ± x →∞ R + ( x ) = 0, lim x →−∞ R − ( x ) = 0 lim ◮ ◮ f ± ∈ L 2 ( R ± ) � � � � − 1, | R ′ � q � 1 ± ( x ) | � q � 1 ◮ | R ± ( x ) | ≤ exp ≤ exp − 1 � � � | λ | | λ | | λ | The eigenvalue problem reduces to the condition f ′ f + (0) = f ′ + (0) − (0) f − (0) , which is the same as √ √ R ′ R ′ − (0) + (0) − − λ + 1 + R + (0) = λ + 1 + R − (0) . Page 12 / 15

  16. Proof Hence, we have solutions f ± of f ′′ ± = ∓ λ f ± + qf ± with ◮ f ± ( x ) = e ∓√∓ λ x (1 + R ± ( x )), x ∈ R ± x →∞ R + ( x ) = 0, lim x →−∞ R − ( x ) = 0 lim ◮ ◮ f ± ∈ L 2 ( R ± ) � � � � − 1, | R ′ � q � 1 ± ( x ) | � q � 1 ◮ | R ± ( x ) | ≤ exp ≤ exp − 1 � � � | λ | | λ | | λ | The eigenvalue problem reduces to the condition f + (0) = f ′ f ′ + (0) − (0) f − (0) , which is the same as √ √ R ′ R ′ − (0) + (0) − − λ + 1 + R + (0) = λ + 1 + R − (0) . This does not hold for �� − 2 � � 1 | λ | > � q � 2 1 · ln √ + 1 . 2 + 1 � Page 12 / 15

  17. Theorem (Behrndt, S., Trunk) We assume an indefinite Sturm-Liouville operator Af = 1 − ( pf ′ ) ′ + qf � � , dom( A ) = D max r with sgn ( x ) · r ( x ) > 0 a.e. in R and q ∈ L 1 ( R ) . Let ◮ r , p , 1 r , 1 p ∈ L ∞ ( R ) ; ◮ pr , ( p ( pr ) ′ ) ∈ AC ( R \ { 0 } ) with ( rp ) ′ ∈ L 2 ( R ) and ( p ( rp ) ′ ) ′ ∈ L 1 ( R ) ; ◮ | r | , p continuously differentiable in 0 . Then for every λ ∈ σ p ( A ) \ R the inequality �� − 2 � � 1 | λ | ≤ � G � 2 ≈ 8 . 3255 · � G � 2 1 · ln √ + 1 1 2 + 1 holds, where � � − 5 (( rp ) ′ ) 2 ( p ( rp ) ′ ) ′ 1 G = + q . � 4 rp 16 r 2 p | rp | Page 13 / 15

  18. However, there is a catch Let − f ′′ + qf q ∈ L 1 ( R ) , � � Af = sgn ( · ) , dom( A ) = D max ◮ For nonnegativ q the non-real point spectrum of A is empty Page 14 / 15

  19. However, there is a catch Let − f ′′ + qf q ∈ L 1 ( R ) , � � Af = sgn ( · ) , dom( A ) = D max ◮ For nonnegativ q the non-real point spectrum of A is empty ◮ Example: q ( x ) = − 100 · 101 · sech 2 ( x ), � q � 2 1 = (100 · 101 · 2) 2 , our bound: ≈ 3 . 4 · 10 9 Page 14 / 15

  20. However, there is a catch Let − f ′′ + qf q ∈ L 1 ( R ) , � � Af = sgn ( · ) , dom( A ) = D max ◮ For nonnegativ q the non-real point spectrum of A is empty ◮ Example: q ( x ) = − 100 · 101 · sech 2 ( x ), � q � 2 1 = (100 · 101 · 2) 2 , our bound: ≈ 3 . 4 · 10 9 Im 65 Re 9900 9900 65 Page 14 / 15

  21. Thank you for your attention! Page 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend