circuit quantum electrodynamics beyond the linear
play

Circuit quantum electrodynamics : beyond the linear dispersive - PowerPoint PPT Presentation

Introduction Beyond linear dispersive Results Conclusion Circuit quantum electrodynamics : beyond the linear dispersive regime Maxime Boissonneault 1 Jay Gambetta 2 Alexandre Blais 1 1 D epartement de Physique et Regroupement Qu eb


  1. Introduction Beyond linear dispersive Results Conclusion Circuit quantum electrodynamics : beyond the linear dispersive regime Maxime Boissonneault 1 Jay Gambetta 2 Alexandre Blais 1 1 D´ epartement de Physique et Regroupement Qu´ eb´ ecois sur les mat´ eriaux de pointe, Universit´ e de Sherbrooke 2 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo June 23 th , 2008 Boissonneault, Gambetta and Blais, Phys. Rev. A 77 060305 (R) (2008) Maxime Boissonneault Universit´ e de Sherbrooke

  2. Introduction Beyond linear dispersive Results Conclusion 1 Introduction Atom and cavity Cavity QED Charge qubit and coplanar resonator Circuit QED The linear dispersive limit Circuit VS cavity QED 2 Beyond linear dispersive Understanding the dispersive transformation The dispersive limit Dissipation in the system Dissipation in the transformed basis 3 Results Reduction of the SNR Measurement induced heat bath The case of the transmon 4 Conclusion Conclusion Maxime Boissonneault Universit´ e de Sherbrooke

  3. Introduction Beyond linear dispersive Results Conclusion Atom and cavity Energy ... ω 01 = ω a Two-levels system Hamiltonian H = ω a „ 1 « 0 2 σ z σ z = 0 − 1 Maxime Boissonneault Universit´ e de Sherbrooke

  4. Introduction Beyond linear dispersive Results Conclusion Atom and cavity x z y Energy ... L ω 01 = ω a Cavity Hamiltonian „ k a k + 1 « X a † H = ω k 2 Two-levels system Hamiltonian k H = ω a „ 1 « 0 2 σ z σ z = 0 − 1 Maxime Boissonneault Universit´ e de Sherbrooke

  5. Introduction Beyond linear dispersive Results Conclusion Atom and cavity x z y Energy ... L ω 01 = ω a Cavity Hamiltonian „ k a k + 1 « X a † H = ω k 2 Two-levels system Hamiltonian k H = ω a „ 1 « 0 2 σ z σ z = 0 − 1 Maxime Boissonneault Universit´ e de Sherbrooke

  6. Introduction Beyond linear dispersive Results Conclusion Atom and cavity ω r = ω 1 ω 2 Response κ = ω r / Q Energy ... Input frequency, rf ω 01 = ω a Cavity Hamiltonian „ k a k + 1 « X a † H = ω k 2 Two-levels system Hamiltonian k Single-mode : H = ω a „ 1 « 0 2 σ z σ z = 0 − 1 H = ω r a † a Maxime Boissonneault Universit´ e de Sherbrooke

  7. Introduction Beyond linear dispersive Results Conclusion Cavity QED g Maxime Boissonneault Universit´ e de Sherbrooke

  8. Introduction Beyond linear dispersive Results Conclusion Cavity QED g Atom-cavity interaction E ≈ g ( a † + a ) σ x ≈ g ( a † σ − + aσ + ) H I = − � D · � r ω g ( z ) = − d 0 sin kz V ǫ 0 Maxime Boissonneault Universit´ e de Sherbrooke

  9. Introduction Beyond linear dispersive Results Conclusion Cavity QED g Atom-cavity interaction E ≈ g ( a † + a ) σ x ≈ g ( a † σ − + aσ + ) H I = − � D · � r ω g ( z ) = − d 0 sin kz V ǫ 0 Jaynes-Cummings Hamiltonian H = ω a 2 σ z + ω r a † a + g ( a † σ − + aσ + ) Jaynes and Cummings, Proc. IEEE 51 89-109 (1963) Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565–582 (2001) Mabuchi and Doherty, Science 298 1372-1377 (2002) Maxime Boissonneault Universit´ e de Sherbrooke

  10. Introduction Beyond linear dispersive Results Conclusion Charge qubit and coplanar resonator Classical Hamiltonian H = 4 E C ( n − n g ) 2 − E J cos δ - - - - - C g C g n e 2 n g = C g V g V g E C = 2( C g + C J ) , E J E C J 2 e J V g C J E J = I 0 Φ 0 2 π Maxime Boissonneault Universit´ e de Sherbrooke

  11. Introduction Beyond linear dispersive Results Conclusion Charge qubit and coplanar resonator Classical Hamiltonian H = 4 E C ( n − n g ) 2 − E J cos δ - - - - - C g C g n e 2 n g = C g V g V g E C = 2( C g + C J ) , E J E C J 2 e J V g C J E J = I 0 Φ 0 2 π Quantum Hamiltonian 4 E C ( n − n g ) 2 | n � � n | X H = n E J X − 2 ( | n � � n + 1 | + h . c . ) n Restricting to n g ∈ [0 , 1] : H = ω a σ z / 2 Shnirman, Sch¨ on and Hermon, Phys. Rev. Lett. 79 2371–2374 (1997) Bouchiat et al ., Physica Scripta T76 165-170 (1998) Nakamura, Pashkin and Tsai, Nature (London) 398 786 (1999) Maxime Boissonneault Universit´ e de Sherbrooke

  12. Introduction Beyond linear dispersive Results Conclusion Charge qubit and coplanar resonator Classical Hamiltonian H = 4 E C ( n − n g ) 2 − E J cos δ - - - - - C g C g n e 2 n g = C g V g V g E C = 2( C g + C J ) , E J E C J 2 e J V g C J E J = I 0 Φ 0 2 π Quantum Hamiltonian 4 E C ( n − n g ) 2 | n � � n | X H = Energie [Arb. Units] E J /4E C =0.1 n E J X − 2 ( | n � � n + 1 | + h . c . ) n Restricting to n g ∈ [0 , 1] : H = ω a σ z / 2 E J Shnirman, Sch¨ on and Hermon, Phys. Rev. Lett. 79 2371–2374 (1997) Bouchiat et al ., Physica Scripta T76 165-170 (1998) 0 0.2 0.4 0.6 0.8 1 Nakamura, Pashkin and Tsai, Nature (London) 398 786 (1999) Gate charge, n g = C g V g /2e Maxime Boissonneault Universit´ e de Sherbrooke

  13. Introduction Beyond linear dispersive Results Conclusion Charge qubit and coplanar resonator Maxime Boissonneault Universit´ e de Sherbrooke

  14. Introduction Beyond linear dispersive Results Conclusion Charge qubit and coplanar resonator L r C r Classical Hamiltonian H = Φ 2 + 1 2 C r V 2 2 L r s 1 ω r = L r C r Maxime Boissonneault Universit´ e de Sherbrooke

  15. Introduction Beyond linear dispersive Results Conclusion Charge qubit and coplanar resonator L r C r Quantum Hamiltonian Classical Hamiltonian r ω r r ω r ( a † + a ) , ( a † − a ) H = Φ 2 + 1 V = Φ = i 2 C r V 2 2 C r 2 L r 2 L r s „ a † a + 1 « 1 H = ω r ω r = 2 L r C r Quantum Fluctuations in Electrical Circuits, M. H. Devoret, Les Houches Session LXIII, Quantum Fluctuations p. 351-386 (1995). Maxime Boissonneault Universit´ e de Sherbrooke

  16. Introduction Beyond linear dispersive Results Conclusion Circuit QED Measurement output C g E J C J Qubit control Atom: super conducting and readout charge qubit ~ 10 GHz Cavity: super conducting 1D transmission line resonator Maxime Boissonneault Universit´ e de Sherbrooke

  17. Introduction Beyond linear dispersive Results Conclusion Circuit QED Measurement output C g E J C J Qubit control Atom: super conducting and readout charge qubit ~ 10 GHz Cavity: super conducting 1D transmission line resonator Parameters Blais et al ., Phys. Rev. A 69 062320 (2004) g : Qubit-cavity interaction Wallraff et al ., Nature 431 162 (2004) ω a : Qubit frequency Wallraff et al ., Phys. Rev. Lett. 95 060501 (2005) ω r : Resonator frequency Leek et al ., Science 318 1889 (2007) ∆ = ω a − ω r : Detuning Schuster et al ., Nature 445 515 (2007) H = ω a Houck et al ., Nature 449 328 (2007) 2 σ z + ω r a † a + g ( a † σ − + aσ + ) Majer et al ., Nature 449 443 (2007) Maxime Boissonneault Universit´ e de Sherbrooke

  18. Introduction Beyond linear dispersive Results Conclusion Circuit QED C g E J C J Parameters Blais et al ., Phys. Rev. A 69 062320 (2004) g : Qubit-cavity interaction Wallraff et al ., Nature 431 162 (2004) ω a : Qubit frequency Wallraff et al ., Phys. Rev. Lett. 95 060501 (2005) ω r : Resonator frequency Leek et al ., Science 318 1889 (2007) ∆ = ω a − ω r : Detuning Schuster et al ., Nature 445 515 (2007) H = ω a Houck et al ., Nature 449 328 (2007) 2 σ z + ω r a † a + g ( a † σ − + aσ + ) Majer et al ., Nature 449 443 (2007) Maxime Boissonneault Universit´ e de Sherbrooke

  19. Introduction Beyond linear dispersive Results Conclusion The linear dispersive limit Jaynes-Cummings H = ω r a † a + ω a σ z 2 + g ( a † σ − + aσ + ) Small parameter λ = g/ ∆ Measurement output Qubit control Atom: super conducting and readout charge qubit ~ 10 GHz Cavity: super conducting 1D transmission line resonator Maxime Boissonneault Universit´ e de Sherbrooke

  20. Introduction Beyond linear dispersive Results Conclusion The linear dispersive limit Jaynes-Cummings Linear dispersive H D = ( ω a + χ ) σ z H = ω r a † a + ω a σ z 2 + g ( a † σ − + aσ + ) 2 + ( ω r + χσ z ) a † a Small parameter λ = g/ ∆ Lamb shift ( χ = gλ = g 2 / ∆ ) Measurement Stark shift or cavity pull output n ≪ n crit . , where n crit . = 1 / 4 λ 2 . Valid if ¯ Qubit control Atom: super conducting and readout charge qubit ~ 10 GHz Cavity: super conducting 1D transmission line resonator 2 CP n (arb. units) 2 χ κ Phase κ o i s Δ ~ 2 π 1GHz s i m s n a r -2 χ κ T ω r − CP ω r + CP ω a Maxime Boissonneault Universit´ e de Sherbrooke

  21. Introduction Beyond linear dispersive Results Conclusion The linear dispersive limit Jaynes-Cummings Linear dispersive H D = ( ω a + χ ) σ z H = ω r a † a + ω a σ z 2 + g ( a † σ − + aσ + ) 2 + ( ω r + χσ z ) a † a Small parameter λ = g/ ∆ Lamb shift ( χ = gλ = g 2 / ∆ ) Measurement Stark shift or cavity pull output n crit . = 1 / 4 λ 2 . Valid if ¯ n ≪ n crit . , where Qubit control Atom: super conducting and readout charge qubit ~ 10 GHz Cavity: super conducting 1D transmission line resonator 2 CP n (arb. units) 2 χ κ Phase κ o i s Δ ~ 2 π 1GHz s i m s n a r -2 χ κ T ω r − CP ω r + CP ω a Maxime Boissonneault Universit´ e de Sherbrooke

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend