non linear integral equation approach to sl 2 1
play

Non-linear integral equation approach to sl ( 2 | 1 ) integrable - PowerPoint PPT Presentation

Non-linear integral equation approach to sl ( 2 | 1 ) integrable network models Andreas Kl umper University of Wuppertal Non-linear integral equation approach to sl ( 2 | 1 ) integrable network models p.1/23 Contents Outline


  1. Non-linear integral equation approach to sl ( 2 | 1 ) integrable network models Andreas Kl¨ umper University of Wuppertal Non-linear integral equation approach to sl ( 2 | 1 ) integrable network models – p.1/23

  2. Contents Outline • Quantum Hall systems, electrons in random potentials; black hole CFTs • R -matrices for fundamental representations of sl ( 2 | 1 ) • transfer matrices and Hamiltonians • Bethe ansatz, short review of work by Gade and Essler, Frahm, Saleur • derivation of non-linear integral equations tJ -model thermodynamics network model Work in collaboration with M. Brockmann Non-linear integral equation approach to sl ( 2 | 1 ) integrable network models – p.2/23

  3. Integrable network models: R -matrices, Yang-Baxter equation Consider R -matrix acting on tensor products of “standard” fundamental representation of sl ( 2 | 1 ) R ( u , v ) = P − 1 2 ( u − v ) I P : graded permutation operator, u and v are complex variables, and indices α , β , µ , ν take three values. R -matrix satisfies Yang-Baxter equation u u = v v w w Generalization to mixed representations (standard fundamental and its conjugate visualized by left and right or up and down pointing arrows) possible! In fact, the three new R -matrices are essentially obtained from rotations of above R -matrix by 90 , 180 , and 270 degrees. Yang-Baxter equation still holds where only arrow directions differ from above pictorial visualization (Gade 1998; Links, Foerster 1999; Abad, Rios 1999; Derkachov, Karakhanyan, Kirschner 2000). Hamiltonian – p.3/23

  4. Transfer matrices, Hamiltonians 1) Product of R -matrices with same representations v 0 0 0 0 0 0 L defines transfer matrix whose logarithmic derivative yields Hamiltonian of supersymmetric tJ -model ( 2 t = J ) P ( c † j , σ c j + 1 , σ + c † ( � S j � H = − t ∑ j + 1 , σ c j , σ ) P + J ∑ S j + 1 − n j n j + 1 / 4 ) , j , σ j 2) Product of R -matrices with alternating representations yields “quantum transfer matrix” whose largest eigenvalue yields free energy of supersymmetric tJ -model Hamiltonian – p.4/23

  5. Transfer matrices, Hamiltonians 3) Transfer matrix with two rows and alternation of representations from column to column (and row to row) v −v 0 +v v 0 +v −v +v −v +v −v 0 0 0 0 0 0 2L defines transfer matrix whose logarithmic derivative yields a local Hamiltonian. Alternatively: lattice constructed from repeated application of double row yields realization of an integrable Chalker-Coddington network with or without relevance for spin-quantum Hall effect; black hole CFTs, emerging non-compact degrees of freedom, continuous spectrum (Saleur, Jacobsen, Ikhlef; Frahm, Seel). Derivation and proof of integrability by R. Gade (1998); extensive investigations of spectrum by Essler, Frahm, Saleur (2005) Our goal: Analytical calculation of largest eigenvalues of T 1 ( v + v 0 ) T 2 ( v − v 0 ) where T 1 and T 2 are transfer matrices with “standard” and conjugated fundamental representations of sl ( 2 | 1 ) in auxiliary space. Hamiltonian – p.5/23

  6. Bethe Ansatz Eigenvalues of transfer matrices T 1 ( v ) and T 2 ( v ) (...Links, Foerster 1999; Göhmann, Seel 2004) Λ 1 ( v ) = λ ( − ) ( v )+ λ ( 0 ) 1 ( v )+ λ (+) Λ 2 ( v ) = λ ( − ) ( v )+ λ ( 0 ) 2 ( v )+ λ (+) ( v ) , ( v ) , 1 1 2 2 where ( v ) = e − i ϕ Φ + ( v + i / 2 ) Φ − ( v + 3i / 2 ) q u ( v − 3i 2 ) λ ( − ) 1 q u ( v + i 2 ) 1 ( v ) = 1 · Φ + ( v + i / 2 ) Φ − ( v − i / 2 ) q u ( v − 3i q γ ( v + 3i 2 ) 2 ) λ ( 0 ) 2 ) , ( ϕ → π ) q u ( v + i q γ ( v − i 2 ) ( v ) = e + i ϕ Φ + ( v − 3i / 2 ) Φ − ( v − i / 2 ) q γ ( v + 3i 2 ) λ (+) 1 q γ ( v − i 2 ) and formulas for λ ( ± , 0 ) are obtained from those above by simultaneous exchange Φ + ↔ Φ − and q u ↔ q γ 2 “Vacuum functions” Φ ± and q -functions in terms of Bethe ansatz rapidities u j and γ α N M Φ ± ( v ) : = ( v ± v 0 ) L , ∏ ∏ q u ( v ) : = ( v − u k ) , q γ ( v ) : = ( v − γ β ) , k = 1 β = 1 Bethe Ansatz – p.6/23

  7. Bethe Ansatz equations Eigenvalue functions have to be analytic → cancellation of poles by zeros yielding Bethe ansatz equations Φ − ( u j − i ) = − e i ϕ q γ ( u j + i ) Φ − ( u j + i ) q γ ( u j − i ) , j = 1 ,..., N Φ + ( γ α + i ) Φ + ( γ α − i ) = − e i ϕ q u ( γ α + i ) q u ( γ α − i ) , α = 1 ,..., M These equations are the same for the QTM of the tJ model and for the supersymmetric network model. Characterization of largest eigenvalue differs: tJ : maximum value of Λ 1 network model: maximum value(s) of Λ 1 · Λ 2 “strange strings” (Essler, Frahm, Saleur 2005) Bethe Ansatz – p.7/23

  8. Bethe Ansatz: root distributions Some results from Essler, Frahm, Saleur (2005) (numerical work for L up to approx. 5000): • groundstate for ϕ = π given by “degenerate solution” u j = − v 0 , γ α = + v 0 for all j , α = 1 ,..., L . groundstate energy is E 0 = − 4 L and hence central charge c = 0 . • excited states are given by seas of “strange strings”, i.e. one u and one γ rapidity with condition Im u = + 1 2 + ε , Im γ = − 1 Re u = Re γ 2 − ε ; and or Im u = − 1 2 + ε , Im γ = + 1 Re u = Re γ 2 − ε and • infinite number of excited states with same scaling dimension, differing by logarithmic corrections 2.0 ∆ N =0 (TB) ∆ N =1 ∆ N =2 ∆ N =3 1.0 ∆ N =5 ∆ N =7 2 indec. (TB) L ( E 8 - E 0 )/2 π 0.5 1/4 0.1 0 0.2 0.4 0.6 1/log( L ) • For special case v 0 = 0 : simplification for states with identical sets of u rapidities and γ rapidities, u j = γ j ( j = 1 ,..., N ) two sets of BA equations coincide as Φ + = Φ − and q u = q γ remaining set of BA equations equivalent to Takhtajan-Babujian solution of spin-1 su ( 2 ) chain Bethe Ansatz – p.8/23

  9. Functional equations: Definition of auxiliary functions tJ model motivated ansatz of suitable auxiliary functions b : = λ ( 0 ) 1 + λ (+) B : = 1 + b = λ ( − ) + λ ( 0 ) 1 + λ (+) 1 1 1 , , λ ( − ) λ ( − ) 1 1 b : = λ ( − ) + λ ( 0 ) b = λ ( − ) + λ ( 0 ) 1 + λ (+) ¯ 1 1 B : = 1 + ¯ 1 1 ¯ , , λ (+) λ (+) 1 1 � � � �� � λ ( 0 ) λ ( − ) + λ ( 0 ) 1 + λ (+) λ ( − ) + λ ( 0 ) λ ( 0 ) 1 + λ (+) 1 1 1 1 1 1 c : = , C : = 1 + c = , λ ( − ) λ (+) λ ( − ) λ (+) 1 1 1 1 Factorization into “elementary factors” ... log ( 1 + b ) = log ( 1 + e − L ε ) etc. ... yields integral equations for logs: log b = : − L ε , Bethe Ansatz – p.9/23

  10. Functional equations: factorization Factorization into “elementary factors” q u , q γ , D u , D γ , Λ 1 b ( v ) = e i ϕ Φ − ( v − i / 2 ) q γ ( v + 3i / 2 ) D γ ( v − i / 2 ) q u ( v + i / 2 ) Λ 1 ( v ) B ( v ) = e i ϕ Φ + ( v + i / 2 ) Φ − ( v + 3i / 2 ) q u ( v − 3i / 2 ) , Φ + ( v + i / 2 ) Φ − ( v + 3i / 2 ) q u ( v − 3i / 2 ) q γ ( v − i / 2 ) Λ 1 ( v ) b ( v ) = e − i ϕ Φ + ( v + i / 2 ) q u ( v − 3i / 2 ) D u ( v + i / 2 ) B ( v ) = e − i ϕ ¯ ¯ Φ − ( v − i / 2 ) Φ + ( v − 3i / 2 ) q γ ( v + 3i / 2 ) , Φ − ( v − i / 2 ) Φ + ( v − 3i / 2 ) q γ ( v + 3i / 2 ) D u ( v + i / 2 ) D γ ( v − i / 2 ) Λ 1 ( v ) c ( v ) = Φ + ( v − 3i / 2 ) Φ − ( v + 3i / 2 ) , C ( v ) = Φ + ( v − 3i / 2 ) Φ − ( v + 3i / 2 ) , where 1 � � Φ − ( v − i ) q γ ( v + i )+ e − i ϕ Φ − ( v + i ) q γ ( v − i ) D u ( v ) : = q u ( v ) 1 � � Φ + ( v + i ) q u ( v − i )+ e i ϕ Φ + ( v − i ) q u ( v + i ) D γ ( v ) : = q γ ( v ) are polynomials due to the Bethe ansatz equations. Usual treatment: taking logarithm and then Fourier transform. However, from the three expressions for B , ¯ B , and C the functions q u , q γ , D u , D γ and Λ 1 can not be resolved! Apparent reason: too many unknowns (5) in comparison to number of equations (3) Bethe Ansatz – p.10/23

  11. Solution of functional equations: tJ -Model Interesting case: thermodynamics of tJ -model (Jüttner, AK, J. Suzuki 1997) • q u and D u are free of zeros above the real axis, q γ and D γ are free of zeros below the real axis, • “effective number” of unknowns: 3 Concrete calculations are done for Fourier transforms of logarithms of all involved functions. Final equations are integral equations of convolution type with kernels κ ( x ) = 1 1 x 2 + 1 / 4 , κ ± ( x ) = κ ( x ± i / 2 ) , 2 π β log b ( x ) = − x 2 + 1 / 4 + β ( µ + h / 2 ) − κ + ∗ log B − κ ∗ log C , β log b ( x ) = − x 2 + 1 / 4 + β ( µ − h / 2 ) − κ − ∗ log B − κ ∗ log C , 2 β log c ( x ) = − x 2 + 1 + 2 β µ − κ ∗ log B − κ ∗ log B − ( κ + + κ − ) ∗ log C 0.35 0.35 1 n=0.604 0.3 0.3 n=0.697 0.8 n=0.079 n=0.776 0.8 Specific heat Compressibility n=0.162 n=0.839 0.25 0.25 n=0.306 n=0.921 n=0.502 0.6 n=0.604 0.6 0.2 0.2 S(T) k(T) c(T) c(T) n=0.226 n=0.502 0.4 n=0.226 0.15 0.15 n=0.604 0.4 n=0.502 n=0.776 n=0.604 n=0.921 0.1 0.1 n=0.776 0.2 n=0.921 0.2 0.05 0.05 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 T T T T Bethe Ansatz – p.11/23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend