for scattering amplitudes
play

for Scattering Amplitudes MHV @ 30, FermiLab 18.3.2016 Pierpaolo - PowerPoint PPT Presentation

Adaptive Unitarity and Magnus Exponential for Scattering Amplitudes MHV @ 30, FermiLab 18.3.2016 Pierpaolo Mastrolia Physics and Astronomy Department Galileo Galilei University of Padova - Italy Motivation Amplitudes & Phenomenology


  1. Adaptive Unitarity and Magnus Exponential for Scattering Amplitudes MHV @ 30, FermiLab 18.3.2016 Pierpaolo Mastrolia Physics and Astronomy Department Galileo Galilei University of Padova - Italy

  2. Motivation Amplitudes & Phenomenology masses do matter non-planar diagrams may contribute integrals diverge from the beauty of simple formulas (in special kinematics) to the beauty of the structures (in arbitrary kinematics) Path Multiloop Integrand Decomposition: exploiting dimensional regularisation Magnus Series for Master Integrals

  3. High Energy Physics Goals: Loops vs Legs Legs 0 1 2 3 4 5 6 7 8 9 5 Indirect searches High precision 4 Loops 3 2 1 Direct discovery 0 High multiplicity

  4. Complexity: Loops vs Legs Legs 0 1 2 3 4 5 6 7 8 9 5 4 Slow progress : Loops 3 one unit O(10ys) 2 1 limitations: many kinematic invariants 0 many particle masses 2006 with Parke and Taylor in good company up to

  5. Complexity: Loops vs Legs Legs 0 1 2 3 4 5 6 7 8 9 5 4 Loops 3 2 1 0 A u t o m a t i o n One-Loop Revolution Dramatic impact on Collider Phenomenology 2006 2015 >> Kunszt, Kosower

  6. Why is it all that difficult? Feynman Diagrams ~ The realm of Integral Calculus ~ dx dy dz ... f(x, y, z,...)

  7. Why is it all that difficult? Feynman Diagrams ~ The realm of Integral Calculus ~ dx dy dz ... f(x, y, z,...) Turning Integral Calculus into an Algebraic Problem

  8. Amplitudes Decomposition: the algebraic way a = a x i + a y j + a z k Basis: {i j k} Scalar product/Projection: to extract the components a x = a.i a y = a.j a z = a.k

  9. Projections :: On-Shell Cut-Conditions vanishing denominators 1 p 2 − m 2 − i 0 → � ( p 2 − m 2 ) 0 →

  10. Completeness Relations: cutting “1” the richness of factorization i (-i) = 1 � | ψ n � � ψ n | = 1 . n ( p 2 − m 2 ) = (/ p − m )(/ p + m ) " µ ν = " µ " ν

  11. Completeness Relations: cutting “1” the richness of factorization =

  12. SuperGravity @ 40 MHV @ 30 TASI lectures @ 20 Integrand-Reduction @10 unitarity at integrand level Ossola Papadopoulos Pittau (2006) Ellis Giele Kunszt Melnikov (2007) Ossola & P.M. (2011) Badger, Frellesvig, Zhang (2011) Zhang (2012) Mirabella, Ossola, Peraro, & P.M. (2012)

  13. One-Loop Integrand Decomposition · · · N n ( q, µ 2 ) Z Z q + p i ) 2 − m 2 i = ( q + p i ) 2 − m 2 A one − loop d − 2 ✏ µ d 4 q A n ( q, µ 2 ) , A n ( q, µ 2 ) ⌘ ¯ i − µ 2 , = D i = (¯ D 0 ¯ ¯ D 1 · · · ¯ n D n − 1 q 2 = q 2 − µ 2 . q = / / ¯ q + / µ , with ¯ We use a bar to denote objects living in d = 4 − 2 � dimensions, A one − loop = c 5 , 0 + c 4 , 0 + c 4 , 4 d+4 + c 3 , 0 + c 3 , 7 d+2 + c 2 , 0 + c 2 , 9 + c 1 , 0 d+2 n @ the integrand-level Ossola, Papadopoulos, Pittau + c 4 , 0 + c 4 , 4 µ 4 + c 3 , 0 + c 3 , 7 µ 2 + c 2 , 0 + c 2 , 9 µ 2 c 5 , 0 + c 1 , 0 A n ( q, µ 2 ) 6 = D 0 ¯ ¯ D 1 ¯ D 2 ¯ D 3 ¯ D 0 ¯ ¯ D 1 ¯ D 2 ¯ D 0 ¯ ¯ D 1 ¯ D 0 ¯ ¯ ¯ D 4 D 3 D 2 D 1 D 0 + c 4 , 0 + c 4 , 4 µ 4 + f 0123 ( q, µ 2 ) + c 3 , 0 + c 3 , 7 µ 2 + f 012 ( q, µ 2 ) + c 2 , 0 + c 2 , 9 µ 2 + f 01 ( q, µ 2 ) = c 5 , 0 + f 01234 ( q, µ 2 ) + c 1 , 0 + f 0 ( q, µ 2 ) D 0 ¯ ¯ D 1 ¯ D 2 ¯ D 3 ¯ D 0 ¯ ¯ D 1 ¯ D 2 ¯ D 0 ¯ ¯ D 1 ¯ D 0 ¯ ¯ ¯ D 4 D 3 D 2 D 1 D 0 f’s are “ spurious” ==> integrate to 0 !!!

  14. Improved Integrand Red’n Integrand Reduction universal 5 N ( q, µ 2 ) ∆ i 1 i 2 ...i k ( q, µ 2 ) ⇢ � X X ∆ i 1 ...i m ( q, µ 2 ) = Res i 1 ...i m D i 1 ¯ ¯ D i 2 . . . ¯ D i 1 ¯ ¯ D i 2 . . . ¯ − D i n D i k polynomial k =( m +1) i 1 <i 2 <...<i k non-polynomial non-polynomial a + b x + c x^2 + ... Ossola Papadopoulos Pittau = = P + = + P + P = P + P + P + = P + P + P + P + integrand subtraction required!

  15. Improved Integrand Red’n Integrand Reduction with Laurent series expansion Forde; Kilgore; Badger; universal ∞ ∞ 5 N ( q, µ 2 ) ∆ i 1 i 2 ...i k ( q, µ 2 ) ⇢ � X X ∆ i 1 ...i m ( q, µ 2 ) = Res i 1 ...i m D i 1 ¯ ¯ D i 2 . . . ¯ D i 1 ¯ ¯ D i 2 . . . ¯ − D i n D i k polynomial k =( m +1) i 1 <i 2 <...<i k polynomial polynomial a + b x + c x^2 + ... a’+ b’ x + c’ x^2 + ... a’’ + b’’ x + c’’ x^2 + ... coefficients of MI’s :: a = a’+ a’’ Laurent series implemented via univariate Polynomial Division Mirabella Peraro & P .M. (2012)

  16. 2.2.2 Quintuple cut � � N (¯ q ) The residue of the quintuple-cut, ¯ D i = . . . = ¯ D m = 0, defined as, q ) = c ( ijk � m ) µ 2 . ∆ ijk � m (¯ q ) = Res ijk � m ¯ D 0 · · · ¯ ¯ 5 , 0 D n − 1 2.2.3 Quadruple cut The residue of the quadruple-cut, ¯ D i = . . . = ¯ D � = 0, defined as, � �� n − 1 � � ∆ ijk � m (¯ q ) N (¯ q ) � � µ 2 � � � c ( ijk � ) + c ( ijk � ) = c ( ijk � ) + c ( ijk � ) µ 2 + c ( ijk � ) ∆ ijk � (¯ q ) = Res ijk � µ 4 − ( K 3 · e 4 ) x 4 − ( K 3 · e 3 ) x 3 ( e 1 · e 2 ) , D 0 · · · ¯ ¯ − D i ¯ ¯ D j ¯ D k ¯ D � ¯ 4 , 1 4 , 3 4 , 0 4 , 2 4 , 4 D n − 1 D m i< <m 2.2.4 Triple cut The residue of the triple-cut, ¯ D i = ¯ D j = ¯ D k = 0, defined as, � n − 1 n − 1 � � � � � N (¯ q ) ∆ ijk � m (¯ q ) ∆ ijk � (¯ q ) � � ∆ ijk (¯ q ) = Res ijk − · · D 0 · · · ¯ ¯ − D i ¯ ¯ D j ¯ D k ¯ D � ¯ − D i ¯ ¯ D j ¯ D k ¯ D n − 1 D m D � i< <m i< < � � � � � SAMURAI � � c ( ijk ) 4 + c ( ijk ) c ( ijk ) 4 + c ( ijk ) ( e 1 · e 2 ) 3 . q ) = c ( ijk ) + c ( ijk ) ( c ( ijk ) + c ( ijk ) 3 , 8 µ 2 ) x 4 + ( c ( ijk ) + c ( ijk ) 3 , 2 x 2 3 , 5 x 2 ( e 1 · e 2 ) 2 − 3 , 3 x 3 3 , 6 x 3 3 , 7 µ 2 − 3 , 9 µ 2 ) x 3 + ¯ ( e 1 · e 2 ) + 3 3 3 , 0 3 , 1 3 , 4 Ossola Reiter Tramontano P.M. (2010) 2.2.5 Double cut S cattering AM plitudes from U nitarity-based R eduction A lgorithm at The residue of the double-cut, ¯ D i = ¯ D j = 0, defined as, the I ntegrand-level � � n − 1 n − 1 n − 1 N (¯ q ) ∆ ijk � m (¯ q ) ∆ ijk � (¯ q ) ∆ ijk (¯ q ) � � � ∆ ij (¯ q ) = Res ij D 0 · · · ¯ ¯ − D i ¯ ¯ D j ¯ D k ¯ D � ¯ − D i ¯ ¯ D j ¯ D k ¯ − D i ¯ ¯ D j ¯ D n − 1 D m D � D k i< <m i< < � i< <k � � · − − · · · � � ( e 1 · e 2 ) 2 . c ( ij ) 1 + c ( ij ) 4 + c ( ij ) 3 − c ( ij ) 2 , 7 x 1 x 4 − c ( ij ) 2 , 9 µ 2 + � � 2 , 2 x 2 2 , 4 x 2 2 , 6 x 2 = c ( ij ) 2 , 0 + c ( ij ) c ( ij ) 2 , 1 x 1 − c ( ij ) 2 , 3 x 4 − c ( ij ) + 2 , 8 x 1 x 3 ( e 1 · e 2 ) + 2 , 5 x 3 2.2.6 Single cut � The residue of the single-cut, ¯ D i = 0, defined as, · · · n − 1 n − 1 � n − 1 n − 1 � ∆ ijk (¯ q ) ∆ ij (¯ q ) ∆ ijk � m (¯ q ) ∆ ijk � (¯ q ) N (¯ q ) � � � � ∆ i (¯ q ) = Res i + D i ¯ ¯ D j ¯ D i ¯ ¯ − − D 0 · · · ¯ ¯ − D i ¯ ¯ D j ¯ D k ¯ D � ¯ − D i ¯ ¯ D j ¯ D k ¯ D k D j D n − 1 D m D � i< <k i<j i< <m i< < � · · � � = c ( i ) c ( i ) 1 , 1 x 2 + c ( i ) 1 , 2 x 1 − c ( i ) 1 , 3 x 4 − c ( i ) 1 , 0 + ( e 1 · e 2 ) . 1 , 4 x 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend