new geometric structures in scattering amplitudes the
play

New geometric structures in scattering amplitudes The anatomy of - PowerPoint PPT Presentation

New geometric structures in scattering amplitudes The anatomy of scattering amplitudes in pure spinor superspace Oliver Schlotterer (AEI Potsdam) based on arXiv:1404.4986, arXiv:1408.3605: C. Mafra,


  1. New geometric structures in scattering amplitudes ——————— The anatomy of scattering amplitudes in pure spinor superspace ——————— Oliver Schlotterer (AEI Potsdam) based on arXiv:1404.4986, arXiv:1408.3605: C. Mafra, OS and work in progress with M. Green and C. Mafra 22.09.2014

  2. 1 Goal of this talk • framework for amplitudes of gluon and graviton multiplet in 10 dim • both field theory and string theory, both type IIA and type IIB • manifest supersymmetry from pure spinor formalism

  3. 2 Goal of this talk • framework for amplitudes of gluon and graviton multiplet in 10 dim • both field theory and string theory, both type IIA and type IIB • manifest supersymmetry from pure spinor formalism Intuitive mapping between • cubic diagrams and kinematic factors • kinematic factors and worldsheet functions Make essential use of BRST symmetry in the pure spinor formalism [N. Berkovits hep-th/0001035]

  4. 3 Pure spinor superspace Bosonic pure spinor λ α defined by algebraic constraint λ α γ m αβ λ β = 0 ∀ m = 0 , 1 , . . . , 9 Pure spinor superspace (PSS) { x m , θ α , λ β } with component prescription � ( λγ m θ ) ( λγ n θ ) ( λγ p θ ) ( θγ mnp θ ) � = 1 BRST invariant & supersymmetric and automated in [C. Mafra 1007.4999]

  5. 4 Pure spinor superspace Bosonic pure spinor λ α defined by algebraic constraint λ α γ m αβ λ β = 0 ∀ m = 0 , 1 , . . . , 9 Pure spinor superspace (PSS) { x m , θ α , λ β } with component prescription � ( λγ m θ ) ( λγ n θ ) ( λγ p θ ) ( θγ mnp θ ) � = 1 BRST invariant & supersymmetric and automated in [C. Mafra 1007.4999] Driving force towards amplitudes in PSS: BRST charge ↔ eq’s of motion λ α � ∂ � ∂θ α + 1 λ α D α 2 k m ( γ m θ ) α ≡ = Q descends from gauge fixing worldsheet action [see Nathan’s talk and 1409.2510]

  6. 5 Outline scattering amplitudes gluon & gluino polariz. e m , χ α

  7. 6 Outline scattering amplitudes A α ( x, θ ) = e ik · x � 1 2 e m ( γ m θ ) α 10 dim N = 1 SYM superfields − 1 3 ( χγ m θ )( γ m θ ) α + θ 3 ke � gluon & gluino polariz. e m , χ α + θ 4 χk + θ 5 k 2 e + . . .

  8. 7 Outline scattering amplitudes part I based on 1404.4986 multiparticle superfields A α ( x, θ ) = e ik · x � 1 2 e m ( γ m θ ) α 10 dim N = 1 SYM superfields − 1 3 ( χγ m θ )( γ m θ ) α + θ 3 ke � gluon & gluino polariz. e m , χ α + θ 4 χk + θ 5 k 2 e + . . .

  9. 8 Outline scattering amplitudes Berends–Giele currents part II based on 1404.4986 part I based on 1404.4986 multiparticle superfields A α ( x, θ ) = e ik · x � 1 2 e m ( γ m θ ) α 10 dim N = 1 SYM superfields − 1 3 ( χγ m θ )( γ m θ ) α + θ 3 ke � gluon & gluino polariz. e m , χ α + θ 4 χk + θ 5 k 2 e + . . .

  10. 9 Outline scattering amplitudes part IV based on [to appear] BRST (pseudo-)invariants part III based on 1408.3605 Berends–Giele currents part II based on 1404.4986 part I based on 1404.4986 multiparticle superfields A α ( x, θ ) = e ik · x � 1 2 e m ( γ m θ ) α 10 dim N = 1 SYM superfields − 1 3 ( χγ m θ )( γ m θ ) α + θ 3 ke � gluon & gluino polariz. e m , χ α + θ 4 χk + θ 5 k 2 e + . . .

  11. 10 I. Multiparticle superfields Vertex operators for SYM states (unintegrated and integrated) V 1 ≡ λ α A 1 U 1 ≡ ∂θ α A 1 1 + 1 α + Π m A m 1 + d α W α 2 N mn F mn α , 1 superfields with known θ expansion ⊗ h = 1 fields as “bookkeeping var’s”

  12. 11 I. Multiparticle superfields Vertex operators for SYM states (unintegrated and integrated) 1 + 1 V 1 ≡ λ α A 1 U 1 ≡ ∂θ α A 1 α + Π m A m 1 + d α W α 2 N mn F mn α , 1 superfields with known θ expansion ⊗ h = 1 fields as “bookkeeping var’s” � � ∂ BRST invariance QV 1 = 0 and Q U 1 = ∂z V 1 = 0 equivalent to equations of motion (since Q = λ α D α on superfields) [E. Witten 1986] 2 D ( α A 1 β ) = γ m αβ A 1 m D α A 1 m = ( γ m W 1 ) α + k 1 m A 1 α D α W β 1 = 1 4 ( γ mn ) αβ F mn 1 = 2 k [ m 1 ( γ n ] W 1 ) α D α F mn 1

  13. 12 I. Multiparticle superfields Vertex operators for SYM states (unintegrated and integrated) 1 + 1 V 1 ≡ λ α A 1 U 1 ≡ ∂θ α A 1 α + Π m A m 1 + d α W α 2 N mn F mn α , 1 superfields with known θ expansion ⊗ h = 1 fields as “bookkeeping var’s” � � ∂ BRST invariance QV 1 = 0 and Q U 1 = ∂z V 1 = 0 equivalent to equations of motion (since Q = λ α D α on superfields) [E. Witten 1986] 2 D ( α A 1 β ) = γ m αβ A 1 components m D α A 1 m = ( γ m W 1 ) α + k 1 m A 1 ⇓ α k m e m = 0 D α W β 1 = 1 4 ( γ mn ) αβ F mn 1 = 2 k [ m � k αβ χ β = 0 1 ( γ n ] W 1 ) α D α F mn 1

  14. 13 Define multiparticle superfields via OPE (where z ij ≡ z i − z j ) � � U 1 ( z 1 ) U 2 ( z 2 ) ∼ z α ′ k 1 · k 2 − 1 ∂θ α A 12 α +Π m A m 12 + d α W α 12 + 1 2 N mn F mn + ∂ ∂z i ( . . . ) 12 12 1 + 1 Same structure as U 1 = ∂θ α A 1 α + Π m A m 1 + d α W α 2 N mn F mn with 1 � � α ( k 2 · A 1 ) + A 2 A 12 A 2 m ( γ m W 1 ) α − (1 ↔ 2) α = 1 2

  15. 14 Define multiparticle superfields via OPE (where z ij ≡ z i − z j ) � � U 1 ( z 1 ) U 2 ( z 2 ) ∼ z α ′ k 1 · k 2 − 1 ∂θ α A 12 α +Π m A m 12 + d α W α 12 + 1 2 N mn F mn + ∂ ∂z i ( . . . ) 12 12 1 + 1 Same structure as U 1 = ∂θ α A 1 α + Π m A m 1 + d α W α 2 N mn F mn with 1 � � α ( k 2 · A 1 ) + A 2 A 12 A 2 m ( γ m W 1 ) α − (1 ↔ 2) α = 1 2 � � m ( k 1 · A 2 ) + ( W 1 γ m W 2 ) − (1 ↔ 2) A 12 m = 1 A 1 p F 2 pm − A 1 2 2 ( k 2 · A 1 ) − (1 ↔ 2) W α 12 = 1 4 ( γ mn W 2 ) α F 1 mn + W α mn ( k 2 · A 1 ) + F 2 F 12 mn = F 2 p F 1 n ] p + 2 k 1 [ m ( W 1 γ n ] W 2 ) − (1 ↔ 2) [ m

  16. 15 Define multiparticle superfields via OPE (where z ij ≡ z i − z j ) � � U 1 ( z 1 ) U 2 ( z 2 ) ∼ z α ′ k 1 · k 2 − 1 ∂θ α A 12 α +Π m A m 12 + d α W α 12 + 1 2 N mn F mn + ∂ ∂z i ( . . . ) 12 12 1 + 1 Same structure as U 1 = ∂θ α A 1 α + Π m A m 1 + d α W α 2 N mn F mn with 1 � � α ( k 2 · A 1 ) + A 2 A 12 A 2 m ( γ m W 1 ) α − (1 ↔ 2) α = 1 2 � � m ( k 1 · A 2 ) + ( W 1 γ m W 2 ) − (1 ↔ 2) A 12 m = 1 A 1 p F 2 pm − A 1 2 2 ( k 2 · A 1 ) − (1 ↔ 2) W α 12 = 1 4 ( γ mn W 2 ) α F 1 mn + W α mn ( k 2 · A 1 ) + F 2 F 12 mn = F 2 p F 1 n ] p + 2 k 1 [ m ( W 1 γ n ] W 2 ) − (1 ↔ 2) [ m ⇓ 2 A 12 . . . α , A m 12 , W α 12 , F mn Four superfield rep’s ↔ 12 1 of the cubic vertex

  17. 16 12 + 1 V 12 ≡ λ α A 12 U 12 ≡ ∂θ α A 12 α + Π m A m 12 + d α W α 2 N mn F mn α , 12 Two-particle EOM ∼ = single-particle EOM ... 2 D ( α A 1 αβ A 1 β ) = γ m m D α A 1 m = ( γ m W 1 ) α + k 1 m A 1 α D α W β = 1 4 ( γ mn ) αβ F mn 1 1 = 2 k [ m 1 ( γ n ] W 1 ) α D α F mn 1

  18. 17 12 + 1 V 12 ≡ λ α A 12 U 12 ≡ ∂θ α A 12 α + Π m A m 12 + d α W α 2 N mn F mn α , 12 Two-particle EOM ∼ = single-particle EOM up to contact terms ∼ ( k 1 · k 2 ) 2 D ( α A 12 αβ A 12 m + ( k 1 · k 2 )( A 1 α A 2 β − A 2 α A 1 β ) = γ m β ) D α A 12 m = ( γ m W 12 ) α + k 12 m A 12 α + ( k 1 · k 2 )( A 1 α A 2 m − A 2 α A 1 m ) D α W β α W β α W β + ( k 1 · k 2 )( A 1 2 − A 2 12 = 1 4 ( γ mn ) αβ F mn 1 ) 12 = 2 k [ m 12 ( γ n ] W 12 ) α + ( k 1 · k 2 )( A 1 − A 2 D α F mn α F mn α F mn ) 12 2 1 + 2( k 1 · k 2 )( A [ n 1 ( γ m ] W 2 ) α − A [ n 2 ( γ m ] W 1 ) α ) where k m 12 ≡ k m 1 + k m 2

  19. 18 12 + 1 V 12 ≡ λ α A 12 U 12 ≡ ∂θ α A 12 α + Π m A m 12 + d α W α 2 N mn F mn α , 12 Two-particle EOM ∼ = single-particle EOM up to contact terms ∼ ( k 1 · k 2 ) 2 D ( α A 12 αβ A 12 m + ( k 1 · k 2 )( A 1 α A 2 β − A 2 α A 1 β ) = γ m β ) D α A 12 m = ( γ m W 12 ) α + k 12 m A 12 α + ( k 1 · k 2 )( A 1 α A 2 m − A 2 α A 1 m ) D α W β α W β α W β + ( k 1 · k 2 )( A 1 2 − A 2 12 = 1 4 ( γ mn ) αβ F mn 1 ) 12 = 2 k [ m 12 ( γ n ] W 12 ) α + ( k 1 · k 2 )( A 1 − A 2 D α F mn α F mn α F mn ) 12 2 1 + 2( k 1 · k 2 )( A [ n 1 ( γ m ] W 2 ) α − A [ n 2 ( γ m ] W 1 ) α ) � � ∂ BRST invariance QV 1 = 0 and Q U 1 = ∂z V 1 replaced by covariance QU 12 = ∂ QV 12 = ( k 1 · k 2 ) V 1 V 2 , ∂zV 12 + ( k 1 · k 2 )( V 1 U 2 − V 2 U 1 )

  20. 19 2 More particles by recursion . . . k 12 � � V 2 ( k 2 · A 1 ) + A 2 V 12 = 1 m ( λγ m W 1 ) − (1 ↔ 2) 1 2

  21. 20 2 3 More particles by recursion (replacing [1,2] by [12,3]) k 123 . . . k 12 � � V 3 ( k 3 · A 12 ) + A 3 V 123 = 1 m ( λγ m W 12 ) − (12 ↔ 3) � 1 2 BRST variation cancels propagators ∼ k 2 12 , k 2 123 of the cubic diagram V 123 = 1 2 ( k 2 123 − k 2 12 ) V 12 V 3 + 1 2 k 2 Q � 12 ( V 1 V 23 − V 2 V 13 )

  22. 21 2 3 More particles by recursion (replacing [1,2] by [12,3]) k 123 . . . k 12 � � V 3 ( k 3 · A 12 ) + A 3 V 123 = 1 m ( λγ m W 12 ) − (12 ↔ 3) � 1 2 BRST variation cancels propagators ∼ k 2 12 , k 2 123 of the cubic diagram 2 ( k 2 123 − k 2 2 k 2 V 123 = 1 12 ) V 12 V 3 + 1 Q � 12 ( V 1 V 23 − V 2 V 13 ) Moreover – totally antisymmetric component is BRST closed and exact V 123 = � V 123 + QH [123] = ⇒ V 123 + V 231 + V 312 = 0 Reproduce Jacobi identity among color tensors f 12 a f a 3 b +cyc(1 , 2 , 3) = 0 = ⇒ evidence for duality between color and kinematics [Bern, Carrasco, Johansson 0805.3993] [Mafra, OS, Stieberger 1104.5224]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend