a new regulator for rapidity divergence and pt
play

A new regulator for rapidity divergence and pT resummation for - PowerPoint PPT Presentation

A new regulator for rapidity divergence and pT resummation for Higgs production at N3LL Hua Xing Zhu with Ye Li, Duff Neill, 1604.00392, 1604.01404; and work in progress LoopFest XV, Buffalo 1 Entering the data rich era for Higgs physics


  1. A new regulator for rapidity divergence and pT resummation for Higgs production at N3LL Hua Xing Zhu with Ye Li, Duff Neill, 1604.00392, 1604.01404; and work in progress LoopFest XV, Buffalo 1

  2. Entering the data rich era for Higgs physics Many interesting talks on Higgs pT distribution in this workshop ❖ top-quark mass effects Neumann ; High energy resummation: Forte ; ❖ Fully-differential distribution: Mistlberger ; Light-quark mass effects: Penin ❖ 2

  3. Sudakov small pT resummation Collins-Soper-Sterman, 1985 At small pT differential distribution contains large logarithms: ❖ Fourier transform ln m M 2 1 α n H s ln m +1 ( M 2 α n H b 2 ) s q 2 q 2 Z h i i ~ d 2 ~ T T q T exp b · ~ q T Z m 2 d ¯ ✓ m 2 µ 2  ◆ � H H ln σ ( b ) ∼ − ln A [ α s (¯ µ )] + B [ α s (¯ µ )] ¯ ¯ µ 2 µ 2 1 /b 2 h i ln 2 ( b 2 m 2 H ) + ln( b 2 m 2 = α s H ) h i ln 3 ( b 2 m 2 H ) + ln 2 ( b 2 m 2 α 2 H ) + ln( b 2 m 2 H ) s h i ln 4 ( b 2 m 2 H ) + ln 3 ( b 2 m 2 H ) + ln 2 ( b 2 m 2 α 3 H ) + ln( b 2 m 2 H ) s + . . . LL NLL NNLL N3LL A 1 A 2 A 3 A 4 See von Manteuffel’s talk B 1 B 2 B 3 This talk! Current states of the art 3

  4. Factorization of pT distribution in SCET No operator definition for A and B. Going to higher order in ❖ logarithmic accuracy highly non-trivial and difficult Soft-Collinear Effective Theory can help! ❖ hard function Beam function soft function d 2 ~ 1 d � Z b ⊥ (2 ⇡ ) 2 e i ~ b ⊥ · ~ Q T [ B ⊗ B ]( ~ b ⊥ , µ, ⌫ ) · S ⊥ ( ~ Q T dY dQ 2 ∼ H ( µ ) b ⊥ , µ, ⌫ ) d 2 ~ � Cross section in SCET factorize into Wilson coefficients from ❖ integrating hard off-shell mode (hard function), matrix element of collinear fields (the beam function), and matrix element of soft Wilson line (soft function). Individual function contain UV and rapidity divergence. After ❖ regularization and renormalization: μ and ν dependence 4

  5. Origin of rapidity divergence ⇤ ¯ S † n ( ~ S † ⇥ ⇥ ⇤ S ⊥ ( b ) = Tr h 0 | T n S n (0) b ) | 0 i T n S ¯ unregulated soft function ¯ Z n n dx a dx b D + ( x 2 ab ) ∼ x a Z ∞ Z ∞ 1 dt 1 dt 2 ∼ ( t 1 t 2 + ~ b 2 ⊥ ) 1 − ✏ x b 0 0 ¯ ¯ n n r = t 1 v = t 1 t 2 change of variable t 2 Z ∞ Z ∞ dr dv unregulated rapidity divergence ∼ ( v 2 + ~ ⊥ ) 1 − ✏ r b 2 0 0 5

  6. There are many different proposals for rapidity regulator in the ❖ market: Ji, Ma, Yuan ’05: Tilting the Wilson line off light-cone ❖ Mantry, Petriello ’10: fully unintegrated colinear matrix element ❖ Becher, Neubert ’11; Becher, Bell, ’12: asymmetric analytic regulator ❖ Echevarria, Idilbi and Scimemi ’11, Delta regulator ❖ Collins ’11: Tilting the Wilson line off light-cone with square-root soft ❖ subtraction Chiu, Jain, Neill, Rothstein ’12: CMU Rapidity Regulator ❖ …… ❖ Our original goal was trying to use one of these regulator to ❖ compute anomalous dimension associated with three-loop rapidity divergence (which can then be related to B 3 ). We end up finding yet a new regulator for rapidity divergence which worths exploring. 6

  7. A new regulator for rapidity divergence x + x − x ⊥ h i h i S ⊥ ( ~ S † n (0 , 0 , ~ unregulated n S n (0 , 0 , ~ S † b ⊥ ) = Tr h 0 | T 0 ⊥ ) b ⊥ ) | 0 i T n S ¯ ¯ soft function regulated soft function h i h i ⊥ ( ~ S † n ( ib 0 ⌧ / 2 , ib 0 ⌧ / 2 , ~ S reg n S n (0 , 0 , ~ S † b ⊥ ) = lim τ → 0 Tr h 0 | T 0 ⊥ ) T n S ¯ b ⊥ ) | 0 i ¯ z b 0 = 2 e − γ E t ν = 1 | ~ b ⊥ | τ O ib 0 ν 7

  8. Properties of the new rapidity regulator Admit operator definition. Can be used to defined transverse- ❖ momentum dependent PDF non-perturbatively mass-like regulator v.s. analytic regulator ❖ 1 1 analytic regulator can not be dropped! η η ln τ 1 τ ln τ new rapidity regulator Manifestly gauge invariant for non-singular gauge at infinite ❖ z t Semi-infinite Wilson lines | ~ b ⊥ | O ib 0 ν Preserve non-Abelian exponentiation theorem for soft Wilson loops ❖ 8

  9. Computing the three-loop soft function with the new regulator Z b 2 0 / ~ b 2 d ln S ⊥ ( ~ µ 2 b ⊥ , µ, ⌫ ) d ¯ ⊥ h i h i ↵ s ( b 0 / | ~ = ↵ s (¯ µ ) + � r b ⊥ | ) µ 2 Γ cusp d ln ⌫ 2 ¯ µ 2 γ 0 B 1 Gehrmann, Lubbert, ❖ r Yang (2012,2014) ❖ Davies, Webber, Stirling (1985) Echevarria, Scimemi, ❖ Grazzini, de Florian (2000) ❖ Vladimirov (2015) Luebbert, Oredsson, γ 1 ❖ B 2 Stahlhofen (2016) r γ 2 Previously unknown B 3 r 9

  10. Double differential soft function To get the three-loop pT soft function, we take a detour ❖ Lifting τ as a dynamical variable, the soft function become double ❖ differential soft function Taking the τ ->0 limit afterwards to recover the pT soft function ❖ Z Z p T e − i ~ Mantry, Petriello, ’09 dE X e − ⌧ E X d 2 ~ b · ~ p T S ( b, ⌧ , µ ) = Lustermans, Waalewijn, Zeune, ’16 double differential soft function h 0 | T [ S † p T � ~ X n S n | X i � ( E X � P 0 X ) � (2) ( ~ P X,T ) h X | S † · n | 0 i n S ¯ ¯ X τ → 0 ~ b → 0 ln n (1 − z ) ln n p 2 T pT soft function Threshold soft function 1 − z p 2 T All integrals in this limit known to three loop! ❖ Anastasiou, et al, ’14 ❖ Li et al, ’14 10

  11. Two-loop double differential soft function Two-loop result can be extracted from 1105.5171 ( Ye Li, Mantry, Petriello ) ❖ Original expression written in terms of classical polylogarithms ❖ (Li2, Li3, Li4, Nielsen’s polylogarithms). Can easily converted to HPL representation S (1) ( b, µ = 1 / τ ) =4 C F H 0 , 1 ( x ) + π 2 C F 3 one-loop squared − 4 3 π 2 H 0 , 1 ( x ) + 268 9 H 0 , 1 ( x ) + 44 h S (2) ( b, µ = 1 / τ ) = C A C F 3 H 0 , 0 , 1 ( x ) − 44 i 3 H 0 , 1 , 1 ( x ) − 8 H 0 , 0 , 0 , 1 ( x ) − 16 H 0 , 0 , 1 , 1 ( x ) − 8 H 0 , 1 , 0 , 1 ( x ) − 16 H 0 , 1 , 1 , 1 ( x ) 4 C F H 0 , 1 ( x ) + π 2 C F − 40 9 H 0 , 1 ( x ) − 8 3 H 0 , 0 , 1 ( x ) + 8 + 1 h i h i 2 + C F n f 3 H 0 , 1 , 1 ( x ) 2 3 + 67 π 2 − π 4 81 − 5 π 2 − 22 ζ (3) + 2428 h 4 ζ (3) − 328 h i i + C A C F + C F n f 9 81 54 3 9 27 x = − b 2 S (3) ( b, τ ) =? threshold constant b 2 0 τ 2 11

  12. We will do the calculation in N=4 Supersymmetric Yang-Mills ❖ theory first. Due to the maximal supersymmetry, the ansatz will be much simpler than QCD: uniform transcendentally N=4 SYM will capture the most complicated part of QCD ❖ QCD can be reconstructed from N=4 SYM by appropriate ❖ combination of color and matter content transcendental weight N=4 SYM QCD pure gluon fermion scalar 6 = ∅ 5 3 loop ∅ 4 ∅ 3 ∅ 2 [N=4 SYM] = 1 gluon + 4 majorana fermion + 3 complex scalar 12

  13. Ansatz for N=4 SYM The ansatz has uniform degree of transcendentality ❖ Ci are rational coefficients need to be fixed ❖ 13

  14. Fixing the coefficients by expanding in small impact parameter The ansatz admits a simple Taylor series expansion around b=0. ❖ x = − b 2 b 2 0 τ 2 14

  15. Fixing the coefficients by expanding in small impact parameter On the other hand, the coefficients can be obtained from direct ❖ calculation Z Z p T e − i ~ d 2 ~ dE X e − ⌧ E X b · ~ p T S ( b, ⌧ , µ ) = h 0 | T [ S † p T � ~ X n S n | X i � ( E X � P 0 X ) � (2) ( ~ P X,T ) h X | S † · n | 0 i n S ¯ ¯ X p T ) + 1 p T ) 2 + 1 p T ) 3 + 1 p T ) 4 + . . . e − i ~ p T = 1 + ( − i ~ 2!( − i ~ 3!( − i ~ 4!( − i ~ b · ~ b · ~ b · ~ b · ~ b · ~ x 2 x x = − b 2 b 2 0 τ 2 15

  16. Obtained a system of linear equation ❖ The system is overdetermined. If there is a solution, it is unique ❖ + …… 16

  17. The N=4 SYM solution one loop two loop ⇣ b ⊥ , ⌧ , µ = ⌧ − 1 ) = c s, N =4 ( ~ S N =4 + N 3 16 ⇣ 2 H 4 + 48 ⇣ 2 H 2 , 2 + 64 ⇣ 2 H 3 , 1 + 3 3 c 96 ⇣ 2 H 2 , 1 , 1 +120 ⇣ 4 H 2 +48 H 6 +24 H 2 , 4 +40 H 3 , 3 +72 H 4 , 2 +128 H 5 , 1 +16 H 2 , 1 , 3 + three loop 56 H 2 , 2 , 2 +80 H 2 , 3 , 1 +80 H 3 , 1 , 2 +144 H 3 , 2 , 1 +224 H 4 , 1 , 1 +64 H 2 , 1 , 1 , 2 +96 H 2 , 1 , 2 , 1 + ⌘ 160 H 2 , 2 , 1 , 1 + 256 H 3 , 1 , 1 , 1 + 192 H 2 , 1 , 1 , 1 , 1 All terms at given loop are integers with uniform sign ❖ Alternating sign between different loop order ❖ These are highly non-trivial check of the correctness of the result! ❖ 17

  18. We are ultimately interested in QCD. Two different approaches ❖ Direct Feynman diagram calculation of the fermionic ❖ contribution (method of differential equation, many integrals, known, 12 new integrals) [N=4 SYM] = 1 gluon + 4 majorana fermion + 3 complex scalar Similar to N=4 SYM case, we made an ansatz and try to fix the ❖ coefficient by expanding in small impact parameter most complicated terms (highest weight terms) given by N=4 ❖ SYM new complication: need new terms in the ansatz ❖ 18

  19. Full three-loop double differential soft function in QCD Cancel in N=1 SYM 19

  20. Taking the τ → 0, rapidity divergence manifest as Log( τ ) ❖ 20

  21. Intriguing relation between rapidity anomalous dimension and threshold anomalous dimension  � 1 Control of threshold logarithms 1 − z + constant term in threshold soft function  1 � Control of pT distribution P 2 T ∗ 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend