nonassociative differential geometry and gravity
play

Nonassociative differential geometry and gravity c Marija - PowerPoint PPT Presentation

10th MATHEMATICAL PHYSICS MEETING: School and Conference on Modern Mathematical Physics 9-14 September 2019, Belgrade, Serbia Nonassociative differential geometry and gravity c Marija Dimitrijevi Ciri c University of Belgrade,


  1. 10th MATHEMATICAL PHYSICS MEETING: School and Conference on Modern Mathematical Physics 9-14 September 2019, Belgrade, Serbia Nonassociative differential geometry and gravity c ´ Marija Dimitrijevi´ Ciri´ c University of Belgrade, Faculty of Physics, Belgrade, Serbia based on: Aschieri, Szabo arXiv: 1504.03915; Aschieri, MDC, Szabo arXiv: 1710.11467.

  2. Noncommutativity & Nonassociativity NC historically: -Heisenberg, 1930: regularization of the divergent electron self-energy, coordinates are promoted to noncommuting operators x ν ≥ 1 x ν ] = i Θ µν ⇒ ∆ˆ x µ , ˆ x µ ∆ˆ 2Θ µν . [ˆ -First model of a NC space-time [ Snyder ’47 ]. More recently: -mathematics: Gelfand-Naimark theorems ( C ∗ -algebras of functions encodes information on topological Hausdorff spaces), -string theory (open string in a constant B -field), -new effects in QFT (UV/IR mixing), -quantum gravity (discretisation of space-time).

  3. NA historically: -Jordan quantum mechanics [ Jordan ’32 ]: hermitean observables do not close an algebra (standard composition, commutator). New composition, A ◦ B is hermitean, commutative but nonassociative: A ◦ B = 1 2(( A + B ) 2 − A 2 − B 2 ) . -Nambu mechanics: Nambu-Poisson bracket (Poisson bracket) { f , g , h } and the fundamental identity (Jacobi identity) [ Nambu’73 ]; quantization still an open problem. f { g , h , k } + { f , h , k } g = { fg , h , k } { f , g , { h 1 , h 2 , h 3 }} + · · · = 0 . More recently: -mathematics: L ∞ algebras [ Stasheff ’94; Lada, Stasheff ’93 ]. -string field theory: symmetries of closed string field theory close a strong homotopy Lie-algebra, L ∞ algebra [ Zwiebach ’15 ], NA geometry of D-branes in curved backgrounds (NA ⋆ -products), closed strings in locally non-geometric backgrounds (low energy limit is a NA gravity). -magnetic monopoles, NA quantum mechanics.

  4. NC/NA geometry and gravity Early Universe, singularities of BHs ⇒ QG ⇒ Quantum space-time NC/NA space-time = ⇒ Gravity on NC/NA spaces. General Relativity (GR) is based on the diffeomorphism symmetry. This concept (space-time symmetry) is difficult to generalize to NC/NA spaces. Different approaches: NC spectral geometry [ Chamseddine, Connes, Marcolli ’07; Chamseddine, Connes, Mukhanov ’14 ]. Emergent gravity [ Steinacker ’10, ’16 ]. Frame formalism, operator description [ Buri´ c, Madore ’14; Fritz, Majid ’16 ]. Twist approach [ Wess et al. ’05, ’06; Ohl, Schenckel ’09; Castellani, Aschieri ’09; Aschieri, Schenkel ’14; Blumenhagen, Fuchs ’16; Aschieri, MDC, Szabo, ’18 ]. NC gravity as a gauge theory of Lorentz/Poincar´ e group [ Chamseddine ’01,’04, Cardela, Zanon ’03, Aschieri, Castellani ’09,’12; Dobrski ’16 ].

  5. Overview NA gravity General NA differntial geometry R -flux induced cochain twist NA tensor calculus NA differential geometry NA deformation of GR Levi-Civita connection NA vacuum Einstein equations NA gravity in space-time Discussion

  6. NA gravity: General NA gravity is based on: -locally non-geometric constant R -flux. Cochain twist F and associator Φ with Φ ( F ⊗ 1) (∆ ⊗ id ) F = (1 ⊗ F ) ( id ⊗ ∆) F . -equivariance (covariance) under the twisted diffeomorphisms (quasi-Hopf algebra of twisted diffeomorphisms). -twisted differential geometry in phase space. In particular: connection, curvature, torsion. Projection of phase space (vacuum) Einstein equations to space-time. -more general, categorical approach in [ Barnes, Schenckel, Szabo ’14-’16 ]. Our goals: -construct NA differential geometry of phase space. -consistently construct NA deformation of GR in space-time: NA Einstein equations and action; investigate phenomenological consequences. -understand symmetries of the obtained NA gravity.

  7. NA differntial geometry: Review of twist deformation Symmetry algebra g and the universal covering algebra Ug . A well defined way of deforming symmetries: the twist formalism. Twist F (introduced by Drinfel’d in 1983-1985) is: -an invertible element of Ug ⊗ Ug -fulfills the 2-cocycle condition (ensures the associativity of the ⋆ -product). F ⊗ 1(∆ ⊗ id ) F = 1 ⊗ F ( id ⊗ ∆) F . (2.1) -additionaly: F = 1 ⊗ 1 + O ( h ); h -deformation parameter.

  8. NA differntial geometry: R -flux induced cochain twist Phase space M : x A = ( x µ , ˜ ∂ µ = ∂ µ , ˜ ∂ � � x µ = p µ ), ∂ A = . ∂ p µ 2 d dimensional, A = 1 , . . . 2 d . The twist F : 2 R µνρ ( p ν ∂ ρ ⊗ ∂ µ − ∂ µ ⊗ p ν ∂ ρ ) � � 2 ( ∂ µ ⊗ ˜ ∂ µ − ˜ ∂ µ ⊗ ∂ µ ) − i κ − i � F = exp , (2.2) with R µνρ totally antisymmetric and constant, κ := ℓ 3 6 � . s Does not fulfill the 2-cocycle condition Φ ( F ⊗ 1) (∆ ⊗ id ) F = (1 ⊗ F ) ( id ⊗ ∆) F . (2.3) The associator Φ: � κ R µνρ ∂ µ ⊗ ∂ ν ⊗ ∂ ρ � � =: φ 1 ⊗ φ 2 ⊗ φ 3 = 1 ⊗ 1 ⊗ 1 + O ( � κ ) . (2.4) Φ = exp Notation: F = f α ⊗ f α , F − 1 = ¯ f α ⊗ ¯ f α , Φ − 1 =: ¯ φ 1 ⊗ ¯ φ 2 ⊗ ¯ φ 3 , Braiding: R = F − 2 =: R α ⊗ R α , R − 1 = F 2 =: R α ⊗ R α .

  9. Hopf aglebra of infinitesimal diffeomorphisms U Vec( M ): [ u , v ] = ( u B ∂ B v A − v B ∂ B u A ) ∂ A , ∆( u ) = 1 ⊗ u + u ⊗ 1 , ǫ ( u ) = 0 , S ( u ) = − u . Quasi-Hopf algebra of infinitesimal diffeomorphisms U Vec F ( M ): -algebra structure does not change -coproduct is deformed: ∆ F ξ = F ∆ F − 1 -counit and antipod do not change: ǫ F = ǫ, S F = S . On basis vectors: ∆ F ( ∂ µ ) = 1 ⊗ ∂ µ + ∂ µ ⊗ 1 , ∂ µ + ˜ ∂ µ ⊗ 1 + i κ R µνρ ∂ ν ⊗ ∂ ρ . ∆ F (˜ 1 ⊗ ˜ ∂ µ ) =

  10. NA differential geometry: NA tensor calculus Guiding principle: Differential geometry on M is covatiant under U Vec( M ). NA differential geometry on M should be covariant under U Vec F ( M ). In pactice: U Vec( M )-module algebra A (functions, forms, tensors) and a , b ∈ A , u ∈ Vec( M ) u ( ab ) = u ( a ) b + au ( b ) , Lie derivative, Leibinz rule (coproduct) . The twist: U Vec( M ) → U Vec F ( M ) and A → A ⋆ with ab → a ⋆ b = f α ( a ) · f α ( b ) . Then A ⋆ is a U Vec F ( M )-module algebra: ξ ( a ⋆ b ) = ξ (1) ( a ) ⋆ ξ (2) ( b ) , for ξ ∈ U Vec F ( M ) and using the twisted coproduct ∆ F ξ = ξ (1) ⊗ ξ (2) .

  11. Commutativity: a ⋆ b = f α ( a ) · f α ( b ) = R α ( b ) ⋆ R α ( a ) =: α b ⋆ α a Associativity: ( a ⋆ b ) ⋆ c = φ 1 a ⋆ ( φ 2 b ⋆ φ 3 c ). Functions: C ∞ ( M ) → C ∞ ( M ) ⋆ f α ( f ) · f α ( g ) f ⋆ g = (2.5) + i κ R µνρ p ν ∂ ρ f · ∂ µ g + · · · , ∂ µ f · ˜ ∂ µ g − ˜ ∂ µ f · ∂ µ g f · g + i � � � = 2 , x ν ] = 2 i κ R µνρ p ρ , [ x µ ⋆ [ x µ ⋆ , p ν ] = i � δ µν , [ p µ ⋆ , p ν ] = 0, , x ρ ] = ℓ 3 [ x µ ⋆ , x ν ⋆ s R µνρ .

  12. NA tensor calculus Forms: Ω ♯ ( M ) → Ω ♯ ( M ) ⋆ ω ∧ ⋆ η = f α ( ω ) ∧ f α ( η ) , (2.6) f ⋆ d x A = d x C ⋆ δ A C f − i κ R AB � � C ∂ B f , with non-vanishing components R x µ , x ν x ρ = R µνρ . Basis 1-forms ˜ ( d x A ∧ ⋆ d x B ) ∧ ⋆ d x C = φ 1 ( d x A ) ∧ ⋆ � φ 2 ( d x B ) ∧ ⋆ φ 3 ( d x C ) � = d x A ∧ ⋆ ( d x B ∧ ⋆ d x C ) = d x A ∧ d x B ∧ d x C . Exterior derivative d : d 2 = 0 and the undeformed Leibniz rule d ( ω ∧ ⋆ η ) = d ω ∧ ⋆ η + ( − 1) | ω | ω ∧ ⋆ d η. (2.7) Duality, ⋆ -pairing: � f α ( ω ) , f α ( u ) � � ω , u � ⋆ = (2.8) .

  13. NA tensor calculus: Lie derivative ⋆ -Lie drivative: L ⋆ u ( T ) = L f α ( u ) ( f α ( T )) , (2.9) ¯ ¯ ¯ ¯ L ⋆ u ( ω ∧ ⋆ η ) = L ⋆ φ 2 ω ) ∧ ⋆ φ 3 η + α ( φ 1 ¯ ϕ 1 ω ) ∧ ⋆ L ⋆ φ 3 ¯ ϕ 3 η ) , φ 1 u ( ϕ 2 u ) ( ¯ α ( ¯ φ 2 ¯ [ L ⋆ u , L ⋆ v ] • = [ f α L ⋆ u , f α L ⋆ v ] = L ⋆ [ u , v ] ⋆ , � f α ( u ) , f α ( v ) � with [ u , v ] ⋆ = and ¯ ¯ ¯ ¯ ¯ ¯ φ 1 u , φ 2 v ] ⋆ , φ 3 z � α ( φ 1 ¯ ϕ 1 v ) , [ α ( φ 2 ¯ ϕ 2 u ) , φ 3 ¯ ϕ 3 z ] ⋆ � � � � � u , [ v , z ] ⋆ ⋆ = [ ⋆ + ⋆ . Relation of L ⋆ u with diffeomorphism symmetry in space-time needs to be understood. ⋆ -Lie derivative generates ”twisted, braided” diffeomorphism symmetry. This symmetry has the L ∞ structure. Work in progress with G. Giotopoulos, V. Radovanovi´ c and R. Szabo.

  14. NA differential geometry: connection, torsion, curvature ⋆ -connection: ∇ ⋆ : Vec ⋆ Vec ⋆ ⊗ ⋆ Ω 1 − → ⋆ ∇ ⋆ u , u �− → (2.10) � ¯ ¯ ¯ ∇ ⋆ ( u ⋆ f ) φ 1 ∇ ⋆ ( φ 2 u ) � φ 3 f + u ⊗ ⋆ d f , = (2.11) ⋆ the right Leibniz rule, for u ∈ Vec ⋆ and f ∈ A ⋆ . In particular: ∇ ⋆ ∂ A =: ∂ B ⊗ ⋆ Γ B A =: ∂ B ⊗ ⋆ (Γ B AC ⋆ d x C ) . (2.12) d ∇ ⋆ ( ∂ A ⊗ ⋆ ω A ) = ∂ A ⊗ ⋆ ( d ω A + Γ A B ∧ ⋆ ω B ) , for ω A ∈ Ω ♯ ⋆ . Torsion: T ⋆ := d ∇ ⋆ � ∂ A ⊗ ⋆ d x A � : Vec ⋆ ⊗ ⋆ Vec ⋆ → Vec ⋆ , T ⋆ ( ∂ A , ∂ B ) = ∂ C ⋆ (Γ C AB − Γ C BA ) =: ∂ C ⋆ T C AB . Torsion-free condition: Γ C AB = Γ C BA . Curvature: R ⋆ := d ∇ ⋆ • d ∇ ⋆ : Vec ⋆ − → Vec ⋆ ⊗ ⋆ Ω 2 ⋆ , R ⋆ ( ∂ A ) = ∂ C ⊗ ⋆ ( d Γ C A + Γ C B ∧ ⋆ Γ B A ) = ∂ C ⊗ ⋆ R C A ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend