lecture series on 3d gravity
play

Lecture series on 3d gravity Lecture 1: Geometry of Classical 3d - PowerPoint PPT Presentation

Lecture series on 3d gravity Lecture 1: Geometry of Classical 3d Gravity Quantum Structure of Spacetime and Gravity 2016 August 21-28 2016 Belgrade, Serbia Catherine Meusburger Department Mathematik, Universitt Erlangen-Nrnberg


  1. Lecture series on 3d gravity Lecture 1: Geometry of Classical 3d Gravity Quantum Structure of Spacetime and Gravity 2016 August 21-28 2016 Belgrade, Serbia Catherine Meusburger Department Mathematik, Universität Erlangen-Nürnberg

  2. Motivation Why 3d gravity? • toy model for quantum gravity in higher dimensions • non-commutative structures and mathematical structures of NC geometry: Hopf algebras, (co)module algebras, twists,… • relates them to classical geometry: Lorentz and hyperbolic geometry, Teichmüller theory,… Content • Lecture 1: Geometry of classical 3d gravity • Construction of spacetimes • Classification results • Relation to Teichmüller and hyperbolic geometry • Lecture 2: Phase space and symplectic structure • Phase space of 3d gravity • Symplectic structure in terms of Poisson-Lie groups • Phase space as cotangent bundle of Teichmüller space • Lecture 3: Quantisation • Quantum 3d gravity as a Hopf algebra gauge theory • Construction of the quantum theory • Relation to models from condensed matter physics

  3. 1. Gravity in 3 dimensions Ric µ ν − 1 Einstein equations 2 g µ ν R + Λ g µ ν = − 8 π GT µ ν • in 3d: Ricci curvature ➩ Riemann curvature R µ νρσ Ric µ ν • no local gravitational degrees of freedom • spacetimes locally isometric to model spacetimes X Λ • global degrees of freedom from matter (point particles) and topology • vacuum solutions ( ) ➩ constant curvature ➩ Einstein spacetimes Λ T µ ν = 0 • constructed as quotients of model spacetimes model spacetimes spacetime X Λ isometry group G Λ Lorentzian Λ > 0 dS 3 PSL(2 , C ) ( − 1 , 1 , 1) PSL(2 , R ) ⊂ G Λ = PSL(2 , R ) n R 3 Λ = 0 M 3 Iso(2 , 1) ∼ X Λ = G Λ / PSL(2 , R ) Λ < 0 AdS 3 PSL(2 , R ) × PSL(2 , R ) S 3 Λ > 0 SU(2) × SU(2) Euclidean (1 , 1 , 1) = SU(2) n R 3 Λ = 0 E 3 Iso(3) ∼ SU(2) ⊂ G Λ H 3 Λ < 0 PSL(2 , C ) X Λ = G Λ / SU(2)

  4. 2. Unified description of model spacetimes isometry groups of Lorentzian model spacetimes • commutative real algebra : notation : with ` 2 = − Λ R Λ = ( R 2 , + , · Λ ) ( a, b ) = a + ` b a = Re ` ( a + ` b ) ( a, b ) · Λ ( c, d ) = ( ac − Λ bd, ad + bc ) b = Im ` ( a + ` b ) a + ` b = a − ` b • analytic continuation analytic function ➩ analytic function f : R Λ → R Λ f : R → R ∂ Re ` f = ∂ Im ` f  f ( x ) + ` f 0 ( x ) y Λ = 0   ∂ x ∂ y ➩ 2 (1 + ` ) f ( x + y ) + 1 1 f ( x + ` y ) = 2 (1 − ` ) f ( x − y ) Λ = − 1 ∂ Re ` f = − Λ ∂ Im ` f  f ( x + i y ) Λ = 1  ∂ y ∂ x • isometry groups of model spacetimes  Iso(2 , 1) Λ = 0   G Λ = { M ∈ Mat(2 , R Λ ) : det( M ) = 1 } = SL(2 , R ) × SL(2 , R ) Λ < 0  SL(2 , C ) Λ > 0  • Lie algebras of isometry groups  iso (2 , 1) Λ = 0   g Λ = { M ∈ Mat(2 , R Λ ) : tr( M ) = 0 } = sl (2 , R ) ⊕ sl (2 , R ) Λ < 0  sl (2 , C ) Λ = 0 Λ > 0 

  5. Lorentzian model spacetimes: M 3 , dS 3 , AdS 3 ✓ ¯ ✓ a ◆ � ¯ ◆ b d b • involution � : Mat(2 , R Λ ) ! Mat(2 , R Λ ) 7! c d c a � ¯ ¯ X Λ = { M ∈ Mat(2 , R Λ ) : M � = M, det( M ) = 1 } • model spacetimes for Λ ∈ { 0 , ± 1 } • action of isometry group B : G Λ × X Λ → X Λ G B M = G · M · G � • metric h M, M i = � det(Im ` ( M ) + ` Re ` ( M )) • geodesics for , g ( t ) = M exp( t ` X ) X ∈ sl (2 , R ) M ∈ X Λ • standard future lightcone L = { exp( ` X ) : X ∈ sl (2 , R ) , tr( X 2 ) < 0 } • foliation of lightcone by 2d hyperbolic space ✓ 1 ◆ ✓ − Re( z ) ◆ + ` s Λ ( t ) | z | 2 0 H : R × H 2 → X Λ H ( z, t ) = c Λ ( t ) H ( t, z ) 0 1 − 1 Re( z ) Im( z ) 8 8 1 Λ = 0 Λ = 0 t ∞ ∞ t 2 k Λ k t 2 k +1 Λ k > > < < X X c Λ ( t ) = (2 k )! = cos( t ) Λ = − 1 s Λ ( t ) = (2 k + 1)! = sin( t ) Λ = − 1 > > k =0 cosh( t ) Λ = 1 k =0 sinh( t ) Λ = 1 : : ➩ compatible with -action: H ( g B z, t ) = g · H ( z, t ) · g � SL(2 , R ) action on upper half-plane by Möbius transformations

  6. 3. Construction and classification of spacetimes maximal globally hyperbolic Lorentzian spacetimes with compact Cauchy surface S M ➩ homeomorphic to R × S M ➩ universal cover globally hyperbolic ˜ M ⊂ X Λ M = ˜ π 1 ( S ) y ˜ ➩ , via group homomorphism ρ : π 1 ( S ) → G Λ M/ π 1 ( S ) M universal cover ρ ( a ) = e 1 ∈ R 3 • Ex: torus universe for Λ =0 π 1 ( S ) = Z × Z spacelike translation ρ ( b ) ρ ( a ) , ρ ( b ) ∈ R 3 ρ ( b ) = u ∈ SO(2 , 1) e 1 u ρ ( a ) spacelike translations Lorentz boost stabilising e 1 ˜ M = M 3 ˜ M = I + ( R e 1 ) future of a line • Cauchy surface of genus g>1, general Λ [Mess, Benedetti, Bonsante] • is convex, open, future complete region in , future of a spacelike graph ˜ X Λ M • initial singularity ∂ ˜ M • cosmological time function t : ˜ t ( p ) = sup { l ( c ) : c past directed causal curve with c (0) = p } M → R • foliation by surfaces of constant cosmological time (cct) M = ∪ T ˜ ˜ ˜ M T = t − 1 ( T ) M T π 1 ( S ) y ˜ • and M = ∪ T ˜ M T M T / π 1 ( S )

  7. conformally static spacetimes of genus g>1 π 1 ( S ) = h a 1 , b 1 , ..., a g , b g | [ a g , b g ] · · · [ a 1 , b 1 ] = 1 i • group homomorphism ρ : π 1 ( S ) → PSL(2 , R ) • universal cover ˜ - interior of standard lightcone M = L • cosmological time - geodesic distance from tip of lightcone t : ˜ M → R • cct surfaces ˜ - rescaled copies of M T = H ( H 2 , T ) ∼ = s Λ ( T ) H 2 H 2 • action of π 1 ( S ) action of Fuchsian group on H 2 Γ ⊂ PSL(2 , R ) ➩ tesselation of by geodesic arc 4g-gons H 2 ➩ M → g · ˜ ˜ ρ → g · ρ · g � covariant: corresponds to ➩ PSL(2 , R ) M · g � v x b 1 • spacetime M = ∪ T ˜ M T / π 1 ( S ) = ∪ T s Λ ( T ) H 2 / Γ conformally static v − 1 b’ v x x 1 a 2 a 1 a’ 1 g M = − dT 2 + s Λ ( T ) 2 g H 2 / Γ a 2 v b 1 v − 1 v x b x v − 1 a 2 x 2 b 1 b v for all values of Λ : b 1 2 a 1 v b 2 v x a 2 v − 1 x a’ { conformally static MGH spacetimes of genus g > 1 } / Di ff 0 ( M ) a 1 a 1 2 b’ 2 v x b 2 = { Fuchsian groups Γ ⊂ PSL(2 , R ) of genus g > 1 } / PSL(2 , R ) = T ( S ) Teichmüller space

  8. geometry change via earthquake and grafting ingredients ⇔ cocompact Fuchsian group Γ ⊂ PSL(2 , R ) • hyperbolic surface Σ = H 2 / Γ ⇔ conformally static spacetime • weighted multicurve finite set of closed, non-intersecting geodesics on { ( c i , w i ) } i ∈ I Σ c i with weights w i > 0 construction • lift geodesics to H 2 and embed into foliated lightcone • select basepoint • cut lightcone along geodesics q p grafting earthquake n • for each geodesic : • for each geodesic : c i c i apply to the right exp( ` w i X c i ) ∈ G Λ apply to the right exp( w i X c i ) ∈ PSL(2 , R ) ~ imaginary earthquake Lorentz boost, hyperbolic distance w i translation, distance w i X c i ∈ sl (2 , R ) stabilises exp( sX c i ) ∈ PSL(2 , R ) c i tr( X 2 c i ) = 1 2 moves to the left w q’ q +w n p p q +w n w p

  9. earthquake grafting • universal cover • remains standard lightcone • deformed lightcone • future of a point • future of a graph • cosmological time • geodesic distance from tip • geodesic distance from graph of lightcone • rescaled copies of H 2 • deformed copies of H 2 • ccT surfaces • action of π 1 ( S ) • via group homomorphism • via group homomorphism ρ : π 1 ( S ) → G Λ ρ : π 1 ( S ) → PSL(2 , R ) Static spacetime Grafted spacetime • spacetime • remains conformally static • evolves with cosmological time w w T w w

  10. earthquake and grafting - transformation of holonomies • group homomorphism ⇔ Fuchsian group of genus g ρ 0 : π 1 ( S ) → PSL(2 , R ) Γ = im( ρ 0 ) • weighted multicurve on Σ = H 2 / Γ { ( c i , w i ) } i ∈ I transformation of group homomorphism given by cocycles grafting earthquake B gr : H 2 × H 2 → G Λ B qu : H 2 × H 2 → PSL(2 , R ) q Y B gr ( p, q ) = exp( ` w i X c i ) Y B qu ( p, q ) = exp( w i X c i ) ( p,q ) ∩ c i ( p,q ) ∩ c i ~ imaginary earthquake X c i ∈ sl (2 , R ) stabilises exp( sX c i ) ∈ PSL(2 , R ) c i p c 3 c 2 c 1 tr( X 2 c i ) = 1 2 moves to the left • - covariant PSL(2 , R ) g ∈ PSL(2 , R ) B ( g B p, g B q ) = g · B ( p, q ) · g � • - invariant g ∈ Γ B ( g B p, g B q ) = B ( p, q ) Γ transformation of holonomies ρ : π 1 ( S ) → G Λ ρ ( λ ) = ρ 0 ( λ ) · B ( p, ρ 0 ( λ ) B p )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend