nonassociative lie theory
play

Nonassociative Lie Theory Ivan P . Shestakov The International - PowerPoint PPT Presentation

Nonassociative Lie Theory Ivan P . Shestakov The International Conference on Group Theory in Honor of the 70th Birthday of Professor Victor D. Mazurov Novosibirsk, July 16-20, 2013 Sobolev Institute of Mathematics Siberian Branch of the


  1. Nonassociative Lie Theory Ivan P . Shestakov The International Conference on Group Theory in Honor of the 70th Birthday of Professor Victor D. Mazurov Novosibirsk, July 16-20, 2013 Sobolev Institute of Mathematics Siberian Branch of the Russian Academy of Sciences Ivan Shestakov Nonassociative Lie Theory

  2. � Lie Groups Lie � Associative Algebras � Hopf Algebras Algebras � Formal Groups � Analytic Loops Sabinin � Nonassociative Algebras � Nonassociative Hopf Algebras Algebras � Formal Loops

  3. Local Loops and Tangent Algebras. Definition Quasigroup (nonassociative group) is a set with a binary operation � Q , ·� where equations a · x = b , y · a = b have unique solutions in Q for any a , b ∈ Q . Loop is a quasigroup with the unit element e . The solutions of the equations above define the operations of left and right division a \ b = x and b / a = y . In terms of these operations, we can give Equivalent definition: Loop is an algebraic system � M , · , \ , /, e � such that a \ ( a · b ) = b = a · ( a \ b ) ( a · b ) / b = a = ( a / b ) · b e · a = a = a · e Ivan Shestakov Nonassociative Lie Theory

  4. Local loops. Let M be smooth finite-dimensional manifold. A local multiplication on open U ⊂ M is a smooth map F : U × U → M . If there exists e ∈ U with the property that F | e × U = Id ( U ) = F | U × e , the local multiplication F is called unital, or a local loop . The point e is referred to as the unit . Notation: F ( x , y ) , x · y , xy . Ivan Shestakov Nonassociative Lie Theory

  5. Left and right divisions For any local loop there exist two local multiplications V × V → M with V ⊂ U , denoted by x / y and y \ x . As above, they are defined by ( x / y ) · y = x and y · ( y \ x ) = x . and are called the right and the left divison , respectively. The existence of both divisions follows from the fact that the right and left multiplication maps R y = F | U × y : U → M , L y = F | y × U : U → M are close to the inclusion map U ֒ → M when y is close to e . In particular, if y is sufficiently close to e , both maps R y and L y are one-to-one and their images contain a neighbourhood of e . We take V to be the largest neighbourhood on which both divisions are defined. Ivan Shestakov Nonassociative Lie Theory

  6. Example 1: Invertible elements in algebras. Call an element a of a unital algebra invertible if both equations ax = 1 and xa = 1 have a unique solution. Let A be a finite-dimensional unital algebra over R . Then the invertible elements of A form a local loop. This local loop is not necessarily a loop. Consider, for instance, the generalized Cayley-Dickson algebras C n on R 2 n . When n > 3 there exist pairs of invertible elements in C n whose product is zero. Ivan Shestakov Nonassociative Lie Theory

  7. Example 2: Homogeneous spaces. Let M be a homogeneous space for a Lie group G and U ⊂ M a neighbourhood of a point e ∈ M . Consider the mapping p : G → M , g �→ g ( e ) . Assume that we are given a section of p over U , that is, a smooth map i : U → G such that i ( e ) is the unit in G and p ◦ i = Id U . Then M is a local loop, with the multiplication U × U → M defined as ( x , y ) �→ p ( i ( x ) i ( y )) . When p is actually a homomorphism of Lie groups, that is, when the stabilizer G e of the element e is a normal subgroup in G , this local loop structure is the same thing as the product on M restricted to U × U . There are many important examples of homogeneous spaces, among them spheres, hyperbolic spaces and Grassmannians. Ivan Shestakov Nonassociative Lie Theory

  8. Example 3: Analytic local loops. Consider an n -tuple of power series F ( x , y ) = ( F 1 ( x , y ) , . . . , F n ( x , y )) where x , y ∈ R n , and assume that all of them converge in some neighbourhood of the origin in R 2 n . Then the map ( x , y ) �→ F ( x , y ) defines a local loop on R n , with the origin as the unit, if and only if F ( 0 , y ) = y and F ( x , 0 ) = x for all x , y ∈ R n . A local loop on an analytic manifold whose multiplication can be written in this form in some coordinate chart is called analytic . Ivan Shestakov Nonassociative Lie Theory

  9. Tangent algebras A.I.Malcev (1955): Analytic loop L ⇒ the tangent algebra T ( L ) , [ x , y ] = − [ y , x ] Malcev algebra T ( L ) , Moufang loop L , ⇒ [ a , a ] = 0 , a ( b ( ac )) = (( ab ) a ) c [ J ( a , b , c ) , a ] = J ( a , b , [ a , c ]) Alternative algebra A , ⇒ Malcev algebra A ( − ) , a ( bb ) = ( ab ) b , [ a , b ] = ab − ba a ( ab ) = ( aa ) b Alternative algebra A ⇒ Moufang loop U ( A ) Ivan Shestakov Nonassociative Lie Theory

  10. Malcev algebras, alternative algebras, and Moufang loops E.N.Kuzmin (1971): Malcev algebras ⇒ Moufang loops I.P.Shestakov (2004): Moufang loops �⇒ Alternative algebras Malcev Problem: ??? Malcev algebras ⇒ Alternative algebras Ivan Shestakov Nonassociative Lie Theory

  11. Akivis algebras M.Akivis (1976): Analytic loop L ⇒ Akivis algebra Ak ( L ) Akivis algebra ( A , + , [ · , · ] , �· , · , ·� ) : [ x , x ] = 0 � ( − 1 ) σ � x σ ( 1 ) , x σ ( 2 ) , x σ ( 3 ) � = J ( x 1 , x 2 , x 3 ) σ ∈ S 3 Algebra B → Ak B = � B , [ x , y ] , ( x , y , z ) � , where [ x , y ] = xy − yx , ( x , y , z ) = xy ) z − x ( yz ) . I.Shestakov (1999): Every Akivis algebra A can be embedded into the algebra Ak B for a suitable algebra B. Ivan Shestakov Nonassociative Lie Theory

  12. Local loops and Sabinin algebras L 1 , L 2 local analytic loops. L 1 → Ak ( L 1 ) ∼ = Ak ( L 2 ) ← L 2 L 1 �∼ = L 2 L.Sabinin, P.Mikheev (1987): Local analytic ⇔ Hyperalgebras loops (Sabinin algebras) L → Sab ( L ) → L Ivan Shestakov Nonassociative Lie Theory

  13. Primitive elements of bialgebras Bialgebra B = � B , + , m , ∆ � : � B , + , m � an algebra: m : B ⊗ B → B � B , + , ∆ � a coalgebra: ∆ : B → B ⊗ B ∆ is a homomorphism of algebras. Prim ( B , ∆) = { w ∈ B | ∆( w ) = w ⊗ 1 + 1 ⊗ w } . 1. B = F � X � , free associative algebra (char =0). ∆( x i ) = x i ⊗ 1 + 1 ⊗ x i . Prim ( F � X � , ∆) = Lie � X � . Ivan Shestakov Nonassociative Lie Theory

  14. Primitive elements of bialgebras 1. B = F { X } , free nonassociative algebra (char =0). ∆( x i ) = x i ⊗ 1 + 1 ⊗ x i . K.Strambach: Prim ( F { X } , ∆) = Ak � X � ? I.Sh.+ U.Umirbaev (2001): p = ( x 2 , x , x ) − x ( x , x , x ) − ( x , x , x ) x ∈ Prim ( F { X } , ∆) , p �∈ Ak � X � Problem: To describe Prim ( F { X } , ∆) . Ivan Shestakov Nonassociative Lie Theory

  15. Primitive elements of bialgebras I.Sh.+ U.Umirbaev: Prim ( F { X } , ∆) is generated (starting with X) by [ x , y ] , ( x , y , z ) and p ( x 1 , . . . , x n ; y 1 , . . . , y m ; z ) . Let u = x 1 x 2 · · · x n , v = y 1 y 2 · · · y m ; denote p ( x 1 , . . . , x n ; y 1 , . . . , y m ; z ) as p ( u , v , z ) . Then the equality � ( u , v , z ) = u ( 1 ) v ( 1 ) p ( u ( 2 ) , v ( 2 ) , z ) ( u ) , ( v ) defines the primitive elements p ( u , v , z ) inductively. p ( x 1 , y 1 , z ) = ( x , y , z ) p ( x 1 x 2 , y , z ) = ( x 1 x 2 , y , z ) − x 1 ( x 2 , y , z ) − x 2 ( x 1 , y , z ) . Ivan Shestakov Nonassociative Lie Theory

  16. Primitive elements of bialgebras Theorem I.Sh.+ U.U.: Let � C , · , δ � be a unital bialgebra over a field F of characteristic 0. Then the space Prim ( C , δ ) is closed relatively the operations p ( u , v , z ) . If C is generated as an algebra by Prim ( C , δ ) then C has a PBW-base over Prim ( C , δ ) . Ivan Shestakov Nonassociative Lie Theory

  17. Sabinin algebras V a vector space, T ( V ) the tensor algebra over V , ∆ : T ( V ) → T ( V ) ⊗ T ( V ) , v �→ 1 ⊗ v + v ⊗ 1 , v ∈ V . �− ; − , −� : T ( V ) ⊗ V ⊗ V → V , w ⊗ y ⊗ z �→ � w ; y , z � . � w ; y , y � = 0 , � w ⊗ u ⊗ v ⊗ w ′ ; y , z � − � w ⊗ v ⊗ u ⊗ w ′ ; y , z � � � w ( 1 ) ⊗ � w ( 2 ) ; u , v � ⊗ w ′ ; y , z � = 0 , + ( w ) � � ( � w ⊗ x ; y , z � + � w ( 1 ) ; � w ( 2 ) ; y , z � , x � ) = 0 . x , y , z ( w ) x , y , z , u , v ∈ V ; w , w ′ ∈ T ( V ) . Ivan Shestakov Nonassociative Lie Theory

  18. Sabinin algebras Examples: - Lie algebras: � 1 ; a , b � = [ a , b ] , � x ; a , b � = 0 , x ∈ VT ( V ) . - Lie triple systems: � 1 ; a , b � = 0 , � u ; a , b � = [ a , b , u ] , u ∈ V ; � x ; a , b � = 0 , x ∈ V ⊗ i , i > 1. - Malcev algebras: � 1 ; a , b � = [ a , b ] , . . . Ivan Shestakov Nonassociative Lie Theory

  19. Shestakov-Umirbaev functor I.Sh.+ U.U.: Let A be an arbitrary algebra. Define � 1 ; a , b � = [ a , b ] � a ; b , c � = ( a , b , c ) − ( a , c , b ) � a 1 , . . . , a n ; b , c � = p ( a 1 · · · a n ; b , c ) − p ( a 1 · · · a n ; c , b ) , where a , b , c , a 1 , . . . , a n ∈ A . Then A ( ∼ ) = � A , �· · · �� is a Sabinin algebra. If A is a bialgebra then Prim A is a subalgebra of the Sabinin algebra A ( ∼ ) . Ivan Shestakov Nonassociative Lie Theory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend