on the curvatures of subalgebras of nilpotent lie algebras
play

On the curvatures of subalgebras of nilpotent Lie algebras Ana Hini - PowerPoint PPT Presentation

Nilpotent Lie algebras Curvatures of a nilpotent Lie algebras Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras On the curvatures of subalgebras of nilpotent Lie algebras Ana Hini c Gali c La Trobe University,


  1. Nilpotent Lie algebras Curvatures of a nilpotent Lie algebras Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras On the curvatures of subalgebras of nilpotent Lie algebras Ana Hini´ c Gali´ c La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau (Universitat Aut` onoma de Barcelona, Spain) PADGE2012, KULeuven, Belgium August 29, 2012 Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  2. Nilpotent Lie algebras Curvatures of a nilpotent Lie algebras Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Table of contents Nilpotent Lie algebras 1 Curvatures of a nilpotent Lie algebras 2 Metric Lie algebras Sectional curvature Ricci curvature Scalar curvature Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras 3 Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Intrinsic and extrinsic sectional curvatures Intrinsic and extrinsic Ricci curvatures Intrinsic and extrinsic scalar curvatures Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  3. Nilpotent Lie algebras Curvatures of a nilpotent Lie algebras Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Nilpotent Lie algebras Let g be an n -dimensional Lie algebra over R . Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  4. Nilpotent Lie algebras Curvatures of a nilpotent Lie algebras Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Nilpotent Lie algebras Let g be an n -dimensional Lie algebra over R . • Defined the following ideals:  C 0 ( g ) = g ,  C 1 ( g ) = [ g , g ] , C k +1 ( g ) = [ C k ( g ) , g ] , for all k ≥ 0.  Then we have the descending central series of g : g = C 0 ( g ) ⊃ C 1 ( g ) ⊃ · · · ⊃ C k ( g ) ⊃ . . . . Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  5. Nilpotent Lie algebras Curvatures of a nilpotent Lie algebras Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Nilpotent Lie algebras Let g be an n -dimensional Lie algebra over R . • Defined the following ideals:  C 0 ( g ) = g ,  C 1 ( g ) = [ g , g ] , C k +1 ( g ) = [ C k ( g ) , g ] , for all k ≥ 0.  Then we have the descending central series of g : g = C 0 ( g ) ⊃ C 1 ( g ) ⊃ · · · ⊃ C k ( g ) ⊃ . . . . Definition A Lie algebra g is called nilpotent if there is an integer k such that C k ( g ) = { 0 } . The smallest integer k such that C k ( g ) = { 0 } is called the nilindex of g . Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  6. Nilpotent Lie algebras Curvatures of a nilpotent Lie algebras Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Examples of nilpotent Lie algebras Every abelian Lie algebra is nilpotent with the nilindex equal to 1. 1 The Heisenberg algebra h 2 k +1 defined in the basis { X 1 , X 2 , . . . , X 2 k +1 } by 2 [ X 2 i − 1 , X 2 i ] = X 2 k +1 , i = 1 , . . . , k . The nilindex is equal to 2. The n -dimensional algebra m 0 ( n ) defined in a basis { X 1 , . . . , X n } by the 3 brackets [ X 1 , X i ] = X i +1 for all 2 ≤ i ≤ n − 1 . The nilindex is equal to n − 1. Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  7. Metric Lie algebras Nilpotent Lie algebras Sectional curvature Curvatures of a nilpotent Lie algebras Ricci curvature Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Scalar curvature Metric Lie algebras • Let ( G , g ) be a simply-connected Lie group with left-invariant Riemannian metric g . • Then ( g , �· , ·� ) is the corresponding Lie algebra of G equipped with an inner product (a metric Lie algebra ). Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  8. Metric Lie algebras Nilpotent Lie algebras Sectional curvature Curvatures of a nilpotent Lie algebras Ricci curvature Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Scalar curvature Metric Lie algebras • Let ( G , g ) be a simply-connected Lie group with left-invariant Riemannian metric g . • Then ( g , �· , ·� ) is the corresponding Lie algebra of G equipped with an inner product (a metric Lie algebra ). • If g is a metric Lie algebra, with inner product �· , ·� , the Levi-Civita connection on g is given by: 2 �∇ X Y , Z � = � [ X , Y ] , Z � + � [ Z , X ] , Y � + � [ Z , Y ] , X � , ∀ X , Y , Z ∈ g . (1) • Decomposition: ∇ X Y = 1 2[ X , Y ] + U ( X , Y ) , where � U ( X , Y ) , Z � = 1 2 ( � [ Z , X ] , Y � + � [ Z , Y ] , X � ) . Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  9. Metric Lie algebras Nilpotent Lie algebras Sectional curvature Curvatures of a nilpotent Lie algebras Ricci curvature Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Scalar curvature Sectional curvature • For a metric Lie algebra g , the sectional curvature for X , Y ∈ g : R ( X , Y , X , Y ) K ( X , Y ) = − � X , X �� Y , Y � − � X , Y � 2 . (2) • The numerator k of the curvature function K for X , Y ∈ g is equal to k ( X , Y ) = − R ( X , Y , X , Y ) = � U ( X , Y ) � 2 − � U ( X , X ) , U ( Y , Y ) � − 3 4 � [ X , Y ] � 2 (3) − 1 2 � [ X , [ X , Y ]] , Y � − 1 2 � [ Y , [ Y , X ]] , X � . Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  10. Metric Lie algebras Nilpotent Lie algebras Sectional curvature Curvatures of a nilpotent Lie algebras Ricci curvature Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Scalar curvature Sectional curvature • For a metric Lie algebra g , the sectional curvature for X , Y ∈ g : R ( X , Y , X , Y ) K ( X , Y ) = − � X , X �� Y , Y � − � X , Y � 2 . (2) • The numerator k of the curvature function K for X , Y ∈ g is equal to k ( X , Y ) = − R ( X , Y , X , Y ) = � U ( X , Y ) � 2 − � U ( X , X ) , U ( Y , Y ) � − 3 4 � [ X , Y ] � 2 (3) − 1 2 � [ X , [ X , Y ]] , Y � − 1 2 � [ Y , [ Y , X ]] , X � . Theorem (Wolf, 1964) Let ( G , g ) be a connected nonabelian nilpotent Lie group and let g be the corresponding Lie algebra. Then there exist two-dimensional subspaces π 1 , π 2 , π 3 ⊂ g such that the sectional curvatures satisfy K ( π 1 ) < 0 < K ( π 3 ) and K ( π 2 ) = 0 . Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  11. Metric Lie algebras Nilpotent Lie algebras Sectional curvature Curvatures of a nilpotent Lie algebras Ricci curvature Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Scalar curvature Ricci curvature • Ricci curvature tensor: Ric( X , Y ) = � n i =1 R ( E i , X , Y , E i ) where { E 1 , E 2 , . . . , E n } is an orthonormal basis for g . • Ricci curvature in the direction of X ∈ g ( X � = 0) is R ic ( X ) = Ric( X , X ) . (4) � X � 2 Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  12. Metric Lie algebras Nilpotent Lie algebras Sectional curvature Curvatures of a nilpotent Lie algebras Ricci curvature Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Scalar curvature Ricci curvature • Ricci curvature tensor: Ric( X , Y ) = � n i =1 R ( E i , X , Y , E i ) where { E 1 , E 2 , . . . , E n } is an orthonormal basis for g . • Ricci curvature in the direction of X ∈ g ( X � = 0) is R ic ( X ) = Ric( X , X ) . (4) � X � 2 • I. Dotti, 1982: For a metric Lie algebra g , the Ricci curvature function in a direction X ∈ g is given by n � ric ( X ) = Ric( X , X ) = R ( E i , X , X , E i ) i =1 n n n = − 1 � [ X , E i ] � 2 − 1 2 B ( X , X ) + 1 � X , [ E i , E j ] � 2 − � � � � [ U ( E i , E i ) , X ] , X � , 2 4 i =1 i , j =1 i =1 (5) where B ( X , Y ) = tr(ad( X ) ◦ ad( Y )) is the Killing form. Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

  13. Metric Lie algebras Nilpotent Lie algebras Sectional curvature Curvatures of a nilpotent Lie algebras Ricci curvature Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras Scalar curvature Lemma Let g be a nilpotent metric Lie algebra and { E 1 , E 2 , . . . , E n } an orthonormal basis. Then for all X , Y ∈ g i , j =1 � X , [ E i , E j ] � 2 − 1 (a) ric ( X ) = 1 � n � n i =1 � [ X , E i ] � 2 , 4 2 (b) Ric( X , Y ) = 1 � n i , j =1 � [ E i , E j ] , X �� [ E i , E j ] , Y � − 1 � n i =1 � [ X , E i ] , [ Y , E i ] � . 4 2 Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend