unitary representations of nilpotent super lie groups
play

Unitary Representations of Nilpotent Super Lie groups Hadi - PowerPoint PPT Presentation

Unitary Representations of Nilpotent Super Lie groups Hadi Salmasian February 6, 2010 Basic Definitions and Notation Let G be a Lie group and H be a Hilbert space. A unitary representation of G in H is a map : G U( H ) where U( H ) is


  1. Unitary Representations of Nilpotent Super Lie groups Hadi Salmasian February 6, 2010

  2. Basic Definitions and Notation Let G be a Lie group and H be a Hilbert space. A unitary representation π of G in H is a map π : G → U( H ) where U( H ) is the group of linear isometries of H , such that : π ( g 1 g 2 ) = π ( g 1 ) π ( g 2 ) π is strongly continuous, i.e., the map g �→ π ( g ) v is continuous for every v ∈ H

  3. Example : the Schr¨ odinger model Suppose ( W , Ω ) is a finite dimensional symplectic vector space, i.e., Ω is nondegenerate, Ω ( v , w ) = − Ω ( w , v ).

  4. Example : the Schr¨ odinger model Suppose ( W , Ω ) is a finite dimensional symplectic vector space, i.e., Ω is nondegenerate, Ω ( v , w ) = − Ω ( w , v ). Set G = H n where H n = { ( v , s ) | v ∈ W and s ∈ R } and the group law is defined by ( v 1 , s 1 ) • ( v 2 , s 2 ) = ( v 1 + v 2 , s 1 + s 2 + 1 2 Ω ( v 1 , v 2 )) .

  5. Example : the Schr¨ odinger model Suppose ( W , Ω ) is a finite dimensional symplectic vector space, i.e., Ω is nondegenerate, Ω ( v , w ) = − Ω ( w , v ). Set G = H n where H n = { ( v , s ) | v ∈ W and s ∈ R } and the group law is defined by ( v 1 , s 1 ) • ( v 2 , s 2 ) = ( v 1 + v 2 , s 1 + s 2 + 1 2 Ω ( v 1 , v 2 )) . We know that dim Z ( H n ) = 1 and H n / Z ( H n ) is commutative (i.e., H n is two-step nilpotent).

  6. Example : the Schr¨ odinger model (cont.) H n = { ( v , s ) | v ∈ W and s ∈ R }

  7. Example : the Schr¨ odinger model (cont.) H n = { ( v , s ) | v ∈ W and s ∈ R } Consider a polarization of ( W , Ω ), i.e., a direct sum decomposition W = X ⊕ Y such that Ω ( X , X ) = Ω ( Y , Y ) = 0 .

  8. Example : the Schr¨ odinger model (cont.) H n = { ( v , s ) | v ∈ W and s ∈ R } Consider a polarization of ( W , Ω ), i.e., a direct sum decomposition W = X ⊕ Y such that Ω ( X , X ) = Ω ( Y , Y ) = 0 . � Set H : = L 2 ( Y ) : = { f : Y → C | Y | f | 2 d µ < ∞ } .

  9. Example : the Schr¨ odinger model (cont.) H n = { ( v , s ) | v ∈ W and s ∈ R } Consider a polarization of ( W , Ω ), i.e., a direct sum decomposition W = X ⊕ Y such that Ω ( X , X ) = Ω ( Y , Y ) = 0 . � Set H : = L 2 ( Y ) : = { f : Y → C | Y | f | 2 d µ < ∞ } . Fix a nonzero a ∈ R and define a representation π a of H n on H via √ � � e a Ω ( y , v ) − 1 f ( y ) π a ( v , 0) f ( y ) = if v ∈ X , � � if v ∈ Y , π a (0 , v ) f ( y ) = f ( y + v ) √ � � e at − 1 f ( y ) π a (0 , s ) f ( y ) = otherwise.

  10. Example : the Schr¨ odinger model (cont.) √ � � e a Ω ( y , v ) − 1 f ( y ) π a ( v , 0) f ( y ) = if v ∈ X , � � π a (0 , v ) f ( y ) = f ( y + v ) if v ∈ Y , √ � � e at − 1 f ( y ) π a (0 , s ) f ( y ) = otherwise.

  11. Example : the Schr¨ odinger model (cont.) √ � � e a Ω ( y , v ) − 1 f ( y ) π a ( v , 0) f ( y ) = if v ∈ X , � � π a (0 , v ) f ( y ) = f ( y + v ) if v ∈ Y , √ � � e at − 1 f ( y ) π a (0 , s ) f ( y ) = otherwise. Facts: For every a ∈ R , π a is an irreducible unitary representation of H n . ( i.e., H does not have nontrivial H n -invariant closed subspaces. )

  12. Example : the Schr¨ odinger model (cont.) √ � � e a Ω ( y , v ) − 1 f ( y ) π a ( v , 0) f ( y ) = if v ∈ X , � � π a (0 , v ) f ( y ) = f ( y + v ) if v ∈ Y , √ � � e at − 1 f ( y ) π a (0 , s ) f ( y ) = otherwise. Facts: For every a ∈ R , π a is an irreducible unitary representation of H n . ( i.e., H does not have nontrivial H n -invariant closed subspaces. ) If a � b , the representations π a and π b are not (unitarily) equivalent.

  13. Example : the Schr¨ odinger model (cont.) √ � � e a Ω ( y , v ) − 1 f ( y ) π a ( v , 0) f ( y ) = if v ∈ X , � � π a (0 , v ) f ( y ) = f ( y + v ) if v ∈ Y , √ � � e at − 1 f ( y ) π a (0 , s ) f ( y ) = otherwise. Facts: For every a ∈ R , π a is an irreducible unitary representation of H n . ( i.e., H does not have nontrivial H n -invariant closed subspaces. ) If a � b , the representations π a and π b are not (unitarily) equivalent. (Stone-von Neumann, 1930’s) Up to unitary equivalence, the irreducible unitary representations of H n are : one-dimensional representations (which factor through 1 H n / Z ( H n )), The representations π a , a ∈ R × . 2

  14. A bit of history... Gelfand (1940’s) : Unitary representations Quantization of ← − − − − − − − → of G G − spaces

  15. A bit of history... Gelfand (1940’s) : Unitary representations Quantization of ← − − − − − − − → of G G − spaces Kirillov (1950’s) If G is a nilpotent simply connected Lie group, then there exists a bijective correspondence Irreducible unitary G − orbits � in g ∗ representations of G

  16. A bit of history... Gelfand (1940’s) : Unitary representations Quantization of ← − − − − − − − → of G G − spaces Kirillov (1950’s) If G is a nilpotent simply connected Lie group, then there exists a bijective correspondence Irreducible unitary G − orbits � in g ∗ representations of G There is also a dictionary : Algebraic operation Geometric operation p ( O ) where p : g ∗ → h ∗ Res G H π p − 1 ( O ) where p : g ∗ → h ∗ Ind G H π π 1 ⊗ π 2 O 1 + O 2 ... ... Note that the algebraic operations should be understood in the context of direct � integrals, i.e. : Res G H π = H n ( σ ) σ d µ ( σ ), etc. ˆ

  17. Kirillov’s orbit method Suppose G is nilpotent and simply connected. Set g = Lie( G ).

  18. Kirillov’s orbit method Suppose G is nilpotent and simply connected. Set g = Lie( G ). Recipe to construct π from O :

  19. Kirillov’s orbit method Suppose G is nilpotent and simply connected. Set g = Lie( G ). Recipe to construct π from O : Fix λ ∈ O . Consider the skew-symmetric form 1 Ω λ : g × g → R defined by Ω λ ( X , Y ) = λ ([ X , Y ]).

  20. Kirillov’s orbit method Suppose G is nilpotent and simply connected. Set g = Lie( G ). Recipe to construct π from O : Fix λ ∈ O . Consider the skew-symmetric form 1 Ω λ : g × g → R defined by Ω λ ( X , Y ) = λ ([ X , Y ]). Proposition. There exists a subalgebra m ⊂ g such that m is 2 a maximal isotropic subspace of Ω λ .

  21. Kirillov’s orbit method Suppose G is nilpotent and simply connected. Set g = Lie( G ). Recipe to construct π from O : Fix λ ∈ O . Consider the skew-symmetric form 1 Ω λ : g × g → R defined by Ω λ ( X , Y ) = λ ([ X , Y ]). Proposition. There exists a subalgebra m ⊂ g such that m is 2 a maximal isotropic subspace of Ω λ . Set M = exp( m ) and define χ λ : M → C × by 3 √ χ λ (exp( X )) = e λ ( X ) − 1 for every X ∈ m .

  22. Kirillov’s orbit method Suppose G is nilpotent and simply connected. Set g = Lie( G ). Recipe to construct π from O : Fix λ ∈ O . Consider the skew-symmetric form 1 Ω λ : g × g → R defined by Ω λ ( X , Y ) = λ ([ X , Y ]). Proposition. There exists a subalgebra m ⊂ g such that m is 2 a maximal isotropic subspace of Ω λ . Set M = exp( m ) and define χ λ : M → C × by 3 √ χ λ (exp( X )) = e λ ( X ) − 1 for every X ∈ m . Set π = Ind G M χ λ . 4

  23. Example : Schr¨ odinger model revisited Recall that : H n = { ( v , s ) | v ∈ W and s ∈ R } Set h n = Lie( H n ) and fix Z ∈ Z ( h n ).

  24. Example : Schr¨ odinger model revisited Recall that : H n = { ( v , s ) | v ∈ W and s ∈ R } Set h n = Lie( H n ) and fix Z ∈ Z ( h n ). H n -orbits in h ∗ n are : one-dimensional { λ } where λ ( Z ) = 0 � representations of H n . { λ ∈ h ∗ n | λ ( Z ) = a } the representation π a . �

  25. Lie superalgebras : introduction g = g 0 ⊕ g 1 and [ · , · ] : g × g → g where ( − 1) | x |·| z | [ X , [ Y , Z ]] + ( − 1) | y |·| x | [ Y , [ Z , X ]] + ( − 1) | z |·| y | [ Z , [ X , Y ]] = 0

  26. Lie superalgebras : introduction g = g 0 ⊕ g 1 and [ · , · ] : g × g → g where ( − 1) | x |·| z | [ X , [ Y , Z ]] + ( − 1) | y |·| x | [ Y , [ Z , X ]] + ( − 1) | z |·| y | [ Z , [ X , Y ]] = 0 Examples gl ( m | n ) : V = V 0 ⊕ V 1 and g = End( V ) = End 0 ( V ) ⊕ End 1 ( V ) with [ X , Y ] = XY − ( − 1) | x |·| y | YX

  27. Lie superalgebras : introduction g = g 0 ⊕ g 1 and [ · , · ] : g × g → g where ( − 1) | x |·| z | [ X , [ Y , Z ]] + ( − 1) | y |·| x | [ Y , [ Z , X ]] + ( − 1) | z |·| y | [ Z , [ X , Y ]] = 0 Examples gl ( m | n ) : V = V 0 ⊕ V 1 and g = End( V ) = End 0 ( V ) ⊕ End 1 ( V ) with [ X , Y ] = XY − ( − 1) | x |·| y | YX sl ( m | n ) , osp ( m | 2 n ) , p ( n ) , q ( n ) , ...

  28. Lie superalgebras : introduction g = g 0 ⊕ g 1 and [ · , · ] : g × g → g where ( − 1) | x |·| z | [ X , [ Y , Z ]] + ( − 1) | y |·| x | [ Y , [ Z , X ]] + ( − 1) | z |·| y | [ Z , [ X , Y ]] = 0 Examples gl ( m | n ) : V = V 0 ⊕ V 1 and g = End( V ) = End 0 ( V ) ⊕ End 1 ( V ) with [ X , Y ] = XY − ( − 1) | x |·| y | YX sl ( m | n ) , osp ( m | 2 n ) , p ( n ) , q ( n ) , ... Heisenberg-Cli ff ord Lie superalgebra.

  29. Heisenberg-Cli ff ord Lie superalgebra Let ( W , Ω ) be a supersymplectic space, i.e., W = W 0 ⊕ W 1 . Ω : W × W → R satisfies Ω ( W 0 , W 1 ) = Ω ( W 1 , W 0 ) = 0 Ω | W 1 × W 1 is a nondegenerate symmetric form. Ω | W 0 × W 0 is a symplectic form.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend