symbolic calculus on coadjoint orbits of nilpotent lie
play

Symbolic calculus on coadjoint orbits of nilpotent Lie groups - PowerPoint PPT Presentation

Symbolic calculus on coadjoint orbits of nilpotent Lie groups Daniel Beltit a Institute of Mathematics of the Romanian Academy *** Joint work with Ingrid Beltit a (IMAR) Bia lowie za, June 27, 2012 Daniel Beltit a


  1. Symbolic calculus on coadjoint orbits of nilpotent Lie groups Daniel Beltit ¸˘ a Institute of Mathematics of the Romanian Academy *** Joint work with Ingrid Beltit ¸˘ a (IMAR) Bia� lowie˙ za, June 27, 2012 Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 1 / 16

  2. References ◮ I. Beltit ¸˘ a, D. B. , Boundedness for Weyl-Pedersen calculus on flat coadjoint orbits. Preprint arXiv:1203.0974v1 [math.AP]. ◮ I. Beltit ¸˘ a, D. B. , Modulation spaces of symbols for representations of nilpotent Lie groups. J. Fourier Analysis Appl. 17 (2011), no. 2, 290–319. ◮ I. Beltit ¸˘ a, D. B. , Algebras of symbols associated with the Weyl calculus for Lie group representations. Monatshefte f¨ ur Math. (to appear). ◮ I. Beltit ¸˘ a, D. B. , Continuity of magnetic Weyl calculus. J. Functional Analysis 260 (2011), no. 7, 1944-1968. Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 2 / 16

  3. Plan 1 Early origins of the pseudo-differential Weyl calculus: H. Weyl (1928), M.E. Taylor (1968), R.F.V. Anderson (1969), L. H¨ ormander (1979) 2 Orbital Weyl calculus for unirreps of nilpotent Lie groups: N.V. Pedersen (1994) 3 Continuity of pseudo-differential operators Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 3 / 16

  4. Origins of the pseudo-differential Weyl calculus Quantum positions Q 1 , . . . , Q n and momenta P 1 , . . . , P n ( Q j f )( q ) = q j f ( q ) and P j f = 1 ∂ f for j = 1 , . . . , n . ∂ q j i Fact: for p = ( p 1 , . . . , p n ) ∈ R n and q = ( q 1 , . . . , q n ) ∈ R n , q · Q + p · P := q 1 Q 1 + · · · + q n Q n + p 1 P 1 + · · · + p n P n is a self-adjoint oper. in L 2 ( R n ), so there exists the unitary e i ( q · Q + p · P ) . ormander calculus a ❀ a ( Q , P ) (symbol ❀ pseudo-diff. oper.) Weyl-H¨ �� e i ( q · Q + p · P ) : S ( R n ) → S ′ ( R n ) a ( Q , P ) = a ( q , p ) d p d q � � �� � π ( q , p , 0) R n × R n “Integral” kernel formula: �� � q + q ′ � e i ( q − q ′ ) · p f ( q ′ ) d p d q ′ ( a ( Q , P ) f )( q ) = a , p 2 R n × R n Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 4 / 16

  5. Schr¨ odinger repres. of the Heisenberg group Canonical commutation relations [ Q j , Q k ] = [ P j , P k ] = 0 and [ Q j , P k ] = δ jk i · I for j , k = 1 , . . . , n • Heisenberg algebra : h 2 n +1 = R n × R n × R p · q ′ − p ′ · q [( q , p , t ) , ( q ′ , p ′ , t ′ )] = [(0 , 0 , )] � �� � symplectic form on R n × R n • Heisenberg group : H 2 n +1 = ( h 2 n +1 , ∗ ), X ∗ Y := log( e X e Y ) = X + Y + 1 2[ X , Y ]; unit element 0 ∈ H 2 n +1 , inversion X − 1 := − X . odinger representation π : H 2 n +1 → B ( L 2 ( R n )), • Schr¨ π ( q , p , t ) f ( x ) = e i ( px + 1 2 pq + t ) f ( q + x ) Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 5 / 16

  6. Orbital Weyl calculus for nilpotent Lie groups, pag. 1 (classical phase space) • G nilpotent Lie group with Lie alg. g and pairing �· , ·� : g ∗ × g → R hence [ g , [ g , . . . [ g , g ] . . . ]] = { 0 } ; e.g., [ h 2 n +1 , [ h 2 n +1 , h 2 n +1 ]] = { 0 } . → g ∗ • coadjoint orbit O ֒ • ξ 0 ∈ O ❀ g ξ 0 = { X ∈ g | ξ 0 ◦ ad g X = 0 } • { 0 } = g 0 ⊂ g 1 ⊂ · · · ⊂ g m = g Jordan-H¨ older sequence ❀ the set of jump indices e ⊂ { 1 , . . . , n } for O • X j ∈ g j \ g j − 1 for j = 1 , . . . , m ❀ g e = span { X j | j ∈ e } ⊆ g ❀ O ∼ → g ∗ e , ξ �→ ξ | g e � O e − i � ξ, •� a ( ξ ) d ξ • Fourier tr. a �→ ˆ a = S ( O ) ∼ → S ( g e ), L 2 ( O ) ∼ → L 2 ( g e ) Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 6 / 16

  7. Orbital Weyl calculus for nilpotent Lie groups, pag. 2 (quantization of the phase space) • π : G → B ( H ) unirrep assoc. with O • H ∞ = { φ ∈ H | π ( · ) φ ∈ C ∞ ( G , H ) } space of smooth vectors H −∞ (=anti-dual of H ∞ ) sp. of distribution vectors (e.g., S ( R n ) ֒ → L 2 ( R n ) ֒ → S ′ ( R n )) ❀ H ∞ ֒ → H ֒ → H −∞ • π ⊗ 2 : G × G → B ( S 2 ( H )), π ⊗ 2 ( g 1 , g 2 ) T = π ( g 1 ) T π ( g 2 ) − 1 ❀ B ( H ) ∞ = { T ∈ S 2 ( H ) | π ⊗ 2 ( · ) T ∈ C ∞ ( G × G , S 2 ( H )) } ֒ → S 1 ( H ) � �� � ≃L ( H −∞ , H ∞ ) regularizing opers. Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 7 / 16

  8. Orbital Weyl calculus for nilpotent Lie groups, pag. 3 (quantization of the observables) g ∗ ⊃ O ← → π : G → B ( H ) Weyl-Pedersen calculus (for a ∈ S ′ ( O )) � Op π ( a ) = g e π (exp G X )ˆ a ( X ) d X : H ∞ → H −∞ Properties (N.V. Pedersen, 1994) ◮ Op π : S ( O ) ∼ → B ( H ) ∞ , S ′ ( O ) ∼ → L ( H ∞ , H −∞ ), L 2 ( O ) ∼ → S 2 ( H ) ◮ Op π ( �· , X �| O ) = d π ( X ) for X ∈ g � ◮ Tr(Op π ( a )) = O a ( ξ ) d ξ ◮ Op π (¯ a ) = Op π ( a ) ∗ Earlier results: A. Melin (1981–1983), K.G. Miller (1982), D. Manchon (1991) Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 8 / 16

  9. Analysis of the square-integrable repres., pag. 1 • Z the center of the group G • repres. π square integrable mod. Z with the coadjoint orbit O � G / Z | ( π ( · ) ψ | ψ ) | 2 < ∞ Definition: ( ∃ ψ ∈ H \ { 0 } ) Characterization: O is an affine subspace in g ∗ odinger repres. is R 2 n × { 1 } ֒ → R 2 n +1 . Example: The orbit of the Schr¨ Theorem (covariance of the Weyl-Pedersen calculus) a ∈ S ′ ( O ), g ∈ G ⇒ Op ( a ◦ Ad ∗ G ( g ) | O ) = π ( g ) − 1 Op ( a ) π ( g ) Diff ( O ) = the set of all linear differential operators D : C ∞ ( O ) → C ∞ ( O ) which are invariant to the coadjoint action: ( ∀ g ∈ G )( ∀ a ∈ C ∞ ( O )) D ( a ◦ Ad ∗ G ( g ) | O ) = ( Da ) ◦ Ad ∗ G ( g ) | O . Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 9 / 16

  10. Analysis of the square-integrable repres., pag. 2   all compact operators if p = 0 ,  { T ∈ B ( H ) | trace | T | p < ∞} S p ( H ) = if 1 ≤ p < ∞ ,   B ( H ) if p = ∞ . Main Theorem Assume dim O = dim G − dim Z and p ∈ { 0 } ∪ [1 , ∞ ]. 1 Equivalent assertions for a ∈ C ∞ ( O ): ◮ for every D ∈ Diff ( O ) we have Da ∈ L p ( O ), not.: a ∈ C ∞ , p ( O ); ◮ for every D ∈ Diff ( O ) we have Op ( Da ) ∈ S p ( H ). 2 C ∞ , p ( O ) has a Fr´ echet topology defined by any of the families of seminorms { a �→ � Da � L p ( O ) } D ∈ Diff ( O ) and { a �→ � Op ( Da ) � S p ( H ) } D ∈ Diff ( O ) . 3 Weyl-Pedersen calculus Op : C ∞ , p ( O ) → S p ( H ) is cont. linear. Here L 0 ( O ) := { a ∈ L ∞ ( O ) | lim ξ →∞ a ( ξ ) = 0 } . Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 10 / 16

  11. Ingredients of the proof • g 0 := g / z ❀ G 0 acts simply transitively on O • Convolution w.r.t. the coadjoint action : b ∈ L 1 loc ( G 0 ), a ∈ L ∞ ( O ) with compact support, � b ( T ) a ( Ad ∗ ( − T ) ξ ) d T ( b ∗ a )( ξ ) = for ξ ∈ O . G 0 This gives � Op ( b ∗ a ) = b ( T ) π ( T ) Op ( a ) π ( − T ) d T . G 0 • Decomposition of the Dirac distribution δ : for all m ∈ N , there exist finite families { u j } j ∈ J ∈ U (( g 0 ) C ) and { f j } j ∈ J in C m 0 ( O ) such that for every a ∈ S ′ ( O ) � A ∗ a = ξ 0 ( a ∗ u j ) ∗ f j , j ∈ J where A ∗ ξ 0 ( a )( X ) = a ( Ad ∗ ( − X ) ξ 0 ). Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 11 / 16

  12. Classical applications • G = H 2 n +1 the Heisenberg group • Op : S ′ ( R 2 n ) ∼ → L ( S ( R n ) , S ′ ( R n )) the classical pseudo-diff. Weyl calculus Not. S 0 0 , 0 ( R 2 n ) := { a ∈ C ∞ ( R 2 n ) | ( ∀ α ∈ N 2 n ) ∂ α a ∈ L ∞ ( R 2 n ) } on-Vaillancourt L 2 -boundedness th.) Corollary 1 (Calder´ a ∈ S 0 0 , 0 ( R 2 n ) = ⇒ Op ( a ) ∈ B ( L 2 ( R n )) . Corollary 2 (Beals criterion) If T : S ( R n ) → S ′ ( R n ) cont. lin. and for all r ≥ 1, j = 1 , . . . , r , X j ∈ { Q 1 , . . . , Q n , P 1 , . . . , P n } we have [ X 1 , . . . [ X r , T ] · · · ] ∈ B ( L 2 ( R n )), then there is a ∈ S 0 0 , 0 ( R 2 n ) such that T = Op ( a ). Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 12 / 16

  13. Non-classical examples, pag. 1 The main theorem applies to a wide variety of situations, quite different from the Heisenberg groups: First piece of evidence (L. Corwin, 1983) Every simply connected nilpotent Lie group embeds into a nilpotent Lie group whose generic coadjoint orbits are flat. ⇒ There exist such groups of arbitrarily high nilpotency index. Second piece of evidence (D. Burde, 2006) There exists a nilpotent Lie group with the properties: ◮ the generic coadjoint orbits are flat; ◮ the Lie algebra has only nilpotent derivations. ⇒ Such a group need not be stratified. Daniel Beltit ¸˘ a (IMAR) Symbolic calculus Bia� lowie˙ za, June 27, 2012 13 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend