techniques alg briques en calcul quantique
play

Techniques algbriques en calcul quantique E. Jeandel Laboratoire de - PowerPoint PPT Presentation

Techniques algbriques en calcul quantique E. Jeandel Laboratoire de lInformatique du Paralllisme LIP , ENS Lyon, CNRS, INRIA, UCB Lyon 8 Avril 2005 E. Jeandel, LIP , ENS Lyon Techniques algbriques en calcul quantique 1/54


  1. Techniques algébriques en calcul quantique E. Jeandel Laboratoire de l’Informatique du Parallélisme LIP , ENS Lyon, CNRS, INRIA, UCB Lyon 8 Avril 2005 E. Jeandel, LIP , ENS Lyon Techniques algébriques en calcul quantique 1/54

  2. Algebraic Techniques in Quantum Computing E. Jeandel Laboratoire de l’Informatique du Parallélisme LIP , ENS Lyon, CNRS, INRIA, UCB Lyon April 8th, 2005 E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 2/54

  3. Outline Combinatorial setting: Quantum gates 1 Definitions Completeness and Universality Algebraic setting 2 Quantum gates are unitary matrices Computing the group Density Conclusion 3 Automata Conclusion E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 3/54

  4. Introduction Classical Quantum � α i q i State q The system may be in all states simultaneously Operators Maps Unitary (hence reversible) maps E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 4/54

  5. Outline Combinatorial setting: Quantum gates 1 Definitions Completeness and Universality Algebraic setting 2 Quantum gates are unitary matrices Computing the group Density Conclusion 3 Automata Conclusion E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 5/54

  6. What is a quantum gate ? ✐ ✐ ✐ ✐ M . . . . . . . . . . . . ✐ ✐ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 6/54

  7. What is a quantum gate ? 0 1 ✐ ✐ 0 β 0 + i α 1 ✐ ✐ M . . . . . . . . . . . . 1 α 0 + β 1 ✐ ✐ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 6/54

  8. What is a quantum gate ? β 0 + α 1 0 ✐ ✐ β 0 − δ 1 0 ✐ ✐ M . . . . . . . . . . . . γ 1 + α 0 γ 0 + δ 1 ✐ ✐ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 6/54

  9. What can we do with quantum gates ? ❜ ❜ ❜ ❜ . . . . . . . . . . N . . M . . . . . . ❜ ❜ (a) The multiplication MN ❜ ❜ ❜ ❜ . . . . . . . . M . . ❜ ❜ . . ❜ ❜ ❜ ❜ ❅ ✁ ❆ � M ❜ ❜ ❜ ❜ ❅ ✁ � ❆ ❜ ❜ ❜ ❜ (b) M [ σ ] (c) The operation M ⊗ I A quantum circuit is everything we can obtain by applying these constructions. E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 7/54

  10. What we cannot do ❍❍❍❍❍❍❍❍❍❍❍❍ ❍❍❍❍❍❍❍❍❍❍❍❍ ❍❍❍❍❍❍❍❍❍❍❍❍ ✟ ✟ ✟ ✟✟✟✟✟✟✟✟✟✟✟✟ ✟✟✟✟✟✟✟✟✟✟✟✟ ✟✟✟✟✟✟✟✟✟✟✟✟ x ✟ ✐ ✟✟✟ x ✐ ❍❍❍ x ❍ ✐ ❍ ❍ ❍ Quantum mechanics implies no-cloning. E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 8/54

  11. Outline Combinatorial setting: Quantum gates 1 Definitions Completeness and Universality Algebraic setting 2 Quantum gates are unitary matrices Computing the group Density Conclusion 3 Automata Conclusion E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 9/54

  12. Completeness A (finite) set of gates is complete if every quantum gate can be obtained by a quantum circuit built on these gates. How to show that some set of gates is complete ? E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 10/54

  13. Completeness A (finite) set of gates is complete if every quantum gate can be obtained by a quantum circuit built on these gates. How to show that some set of gates is complete ? E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 10/54

  14. Game: Design this gate R G ✐ G ✐ G B ✐ G ✐ B R ✐ G ✐ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 11/54

  15. Toolkit 1 R G R R ❞ ❞ ❞ ❞ 1 1 0 0 ❞ ❞ ❞ ❞ M M 1 1 1 1 ❞ ❞ ❞ ❞ R R R R ❞ ❞ ❞ ❞ 1 1 0 0 ❞ ❞ ❞ ❞ M M 0 0 0 0 ❞ ❞ ❞ ❞ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 12/54

  16. Toolkit 1: Universality Fact If there are two wires set to 1 , we can make the gate G. This is called universality with ancillas . R G ❞ ❞ ❞ M ❞ ❆ ✁ ❆ ✁ ✁ ✁ ❆ ❆ ❞ ❞ ✁ ✁ ❆ ✁ ❆ ✁ ✁ ✁ ❆ ❆ ✁ ❆ ✁ ❆ 1 ❆ ❆ ❞ ❞ ✁ ✁ ❆ ❆ ✁ ❆ ✁ ❆ 1 ❞ ❞ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 13/54

  17. Toolkit 1: Non-completeness Fact If among the additional wires, strictly less than 2 are set to 1 , the gate G cannot be made. Any circuit, even the most intricate, cannot produce any 1 using only the gate M . R R R ❞ ❞ 0 ❞ ❞ M M ❆ ✁ ❆ � ✁ � 0 ❆ ❆ ❞ ❞ ✁ ❆ ✁ ✁ ✁ ✁ ❆ ❆ ✁ ❆ ❆ 0 ❆ ❞ ❞ ✁ ✁ ❅ ❆ ✁ ❆ ✁ ❅ 0 ❞ ❞ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 14/54

  18. Toolkit 1: Summary Theorem (8.7) There exists a set of gates B i such that B i is 2 -universal but neither 1 -universal nor k-complete. E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 15/54

  19. Toolkit 2 R G R G ❞ ❞ ❞ ❞ 1 1 0 0 ❞ ❞ ❞ ❞ M M 1 1 0 0 ❞ ❞ ❞ ❞ 1 1 0 0 ❞ ❞ ❞ ❞ R R ❞ ❞ x x otherwise ❞ ❞ M y y ❞ ❞ z z ❞ ❞ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 16/54

  20. Toolkit 2: Non-completeness Fact Without any additional wire, we cannot realise the gate G. If the three given wires are set to 1 , 1 and 0 there is no mean to have three 1 or three 0. R R ❞ ❞ 1 1 ❞ ❞ M 1 1 ❞ ❞ 0 0 ❞ ❞ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 17/54

  21. Toolkit 2: 2 additional wires We are given two additional 0/1-wires. We have now five 0/1-wires. 3 of them must be equal ! R G ❞ ❞ 1 ❞ ❞ M 0 ❞ ❞ ❆ ✁ ❆ ✁ ✁ ✁ 0 ❆ ❆ ❞ ❞ ✁ ✁ ❆ ✁ ❆ ✁ ✁ ✁ ❆ ❆ ✁ ❆ ✁ ❆ 1 ❆ ❆ ❞ ❞ ✁ ✁ ❆ ❆ ✁ ❆ ✁ ❆ 1 ❞ ❞ Problem: The wiring depends on the 3 equal wires. E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 18/54

  22. Toolkit 2: 2 additional wires We are given two additional 0/1-wires. We have now five 0/1-wires. 3 of them must be equal ! R G ❞ ❞ 1 ❞ ❞ M 0 ❞ ❞ ❆ ✁ ❆ ✁ ✁ ✁ 0 ❆ ❆ ❞ ❞ ✁ ✁ ❆ ✁ ❆ ✁ ✁ ✁ ❆ ❆ ✁ ❆ ✁ ❆ 1 ❆ ❆ ❞ ❞ ✁ ✁ ❆ ❆ ✁ ❆ ✁ ❆ 1 ❞ ❞ Problem: The wiring depends on the 3 equal wires. E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 18/54

  23. Toolkit 2: Solution Consider the following circuit: ❜ ❜ M M M M M ❜ ❆ ✁ ❜ ❅ � ❆ ✁ ✁ ❆ ❆ ✁ ❜ ✁ ❆ ✁ ❆ ❜ ❜ ❜ ❇ ✂ ✂ ❈ � M M M M M ❜ ❇ � ❇ ✂ ❇ ✂ ✂ ❈ ✂ ✂ ❜ ❇ ✁ ✂ ❇ ❇ ❇ ✂ ❆ ✁ ✂ ❈ ❜ ✁ ❇ ❇ ✂ ❇ ❇ ✁ ❆ ✂ ❈ ❜ E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 19/54

  24. Toolkit 2: Solution If 4 bits are equal: R R G B B ❜ ❜ 1 1 1 1 1 M M M M M ❜ 1 1 1 ❆ ✁ 0 0 ❜ 0 � ❅ 1 ❆ ✁ 1 ✁ ❆ 1 ❆ ✁ 1 ❜ 1 0 ✁ ❆ 0 1 ✁ ❆ 1 ❜ 1 1 1 1 1 B R G G G G ❜ ❜ 1 ❇ ✂ ✂ 1 1 1 ❈ � 0 M M M M M ❜ 1 1 0 0 1 � ❇ ✂ ❇ ❇ ✂ ✂ ❈ ✂ ✂ ❜ 1 1 1 1 1 ❇ ✁ ✂ ❇ ❇ ❇ ✂ ❆ ✁ ✂ ❈ ❜ ✁ ❇ ❇ 1 1 ✂ ❇ ❇ 1 ✁ ❆ 1 ✂ ❈ 1 ❜ 0 0 1 1 1 E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 20/54

  25. Toolkit 2: Solution If 4 bits are equal: R R G B B ❜ ❜ 1 1 1 1 1 M M M M M ❜ 1 1 1 ❆ ✁ 0 0 ❜ 0 � ❅ 1 ❆ ✁ 1 ✁ ❆ 1 ❆ ✁ 1 ❜ 1 0 ✁ ❆ 0 1 ✁ ❆ 1 ❜ 1 1 1 1 1 B R G G G G ❜ ❜ 1 ❇ ✂ ✂ 1 1 1 ❈ � 0 M M M M M ❜ 1 1 0 0 1 � ❇ ✂ ❇ ❇ ✂ ✂ ❈ ✂ ✂ ❜ 1 1 1 1 1 ❇ ✁ ✂ ❇ ❇ ❇ ✂ ❆ ✁ ✂ ❈ ❜ ✁ ❇ ❇ 1 1 ✂ ❇ ❇ 1 ✁ ❆ 1 ✂ ❈ 1 ❜ 0 0 1 1 1 E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 20/54

  26. Toolkit 2: Solution If 4 bits are equal: R R G B B ❜ ❜ 1 1 1 1 1 M M M M M ❜ 1 1 1 ❆ ✁ 0 0 ❜ 0 � ❅ 1 ❆ ✁ 1 ✁ ❆ 1 ❆ ✁ 1 ❜ 1 0 ✁ ❆ 0 1 ✁ ❆ 1 ❜ 1 1 1 1 1 B R G G G G ❜ ❜ 1 ❇ ✂ ✂ 1 1 1 ❈ � 0 M M M M M ❜ 1 1 0 0 1 � ❇ ✂ ❇ ❇ ✂ ✂ ❈ ✂ ✂ ❜ 1 1 1 1 1 ❇ ✁ ✂ ❇ ❇ ❇ ✂ ❆ ✁ ✂ ❈ ❜ ✁ ❇ ❇ 1 1 ✂ ❇ ❇ 1 ✁ ❆ 1 ✂ ❈ 1 ❜ 0 0 1 1 1 E. Jeandel, LIP , ENS Lyon Algebraic Techniques in Quantum Computing 20/54

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend