mathematical analysis of an adaptive biasing potential
play

Mathematical analysis of an Adaptive Biasing Potential method for - PowerPoint PPT Presentation

Mathematical analysis of an Adaptive Biasing Potential method for diffusions Charles-Edouard Brhier Joint work with Michel Benam (Neuchtel, Switzerland) CNRS & Universit Lyon 1, Institut Camille Jordan (France) C-E Brhier


  1. Mathematical analysis of an Adaptive Biasing Potential method for diffusions Charles-Edouard Bréhier Joint work with Michel Benaïm (Neuchâtel, Switzerland) CNRS & Université Lyon 1, Institut Camille Jordan (France) C-E Bréhier (CNRS-Lyon) Convergence of ABP 1 / 31

  2. Plan of the talk Motivations 1 The Adaptive Biasing Potential method 2 Consistency and elements of proof 3 Self-interacting diffusions Analysis of the ABP method Extensions 4 Examples Abstract framework C-E Bréhier (CNRS-Lyon) Convergence of ABP 2 / 31

  3. Motivations: setting Goal: estimating averages � 1 � T d φ ( x ) e − β V ( x ) dx , φ d µ β = Z ( β ) where V : T d → R . From now on β = 1. The probability distribution µ is ergodic for the overdamped Langevin dynamics: √ dX 0 t = −∇ V ( X 0 t ) dt + 2 dW t . Difficulty: slow convergence of temporal averages (metastability) � t 1 � φ ( X s ) ds → φ d µ. t t →∞ 0 C-E Bréhier (CNRS-Lyon) Convergence of ABP 3 / 31

  4. Context Use of an importance sampling strategy: change of the drift coefficient in the dynamics. A nice review B. M. Dickson. Survey of adaptive biasing potentials: comparisons and outlook. Current Opinion in Structural Biology , 2017. Related to the following techniques: umbrella sampling S. Marsili, A. Barducci, R. Chelli, P. Procacci, and V. Schettino. Self-healing umbrella sampling: a non-equilibrium approach for quantitative free energy calculations. The Journal of Physical Chemistry B , 2006. G. Fort, B. Jourdain, T. Lelièvre, and G. Stoltz. Self-healing umbrella sampling: convergence and efficiency. Stat. Comput. , 2017. C-E Bréhier (CNRS-Lyon) Convergence of ABP 4 / 31

  5. Context Use of an importance sampling strategy: change of the drift coefficient in the dynamics. A nice review B. M. Dickson. Survey of adaptive biasing potentials: comparisons and outlook. Current Opinion in Structural Biology , 2017. Related to the following techniques: metadynamics A. Laio and M. Parrinello. Escaping free-energy minima. Proceedings of the National Academy of Sciences , 2002. A. Barducci, G. Bussi, and M. Parrinello. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Physical review letters , 2008. C-E Bréhier (CNRS-Lyon) Convergence of ABP 4 / 31

  6. Context Use of an importance sampling strategy: change of the drift coefficient in the dynamics. A nice review B. M. Dickson. Survey of adaptive biasing potentials: comparisons and outlook. Current Opinion in Structural Biology , 2017. Related to the following techniques: Wang-Landau F. Wang and D. Landau. Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Physical Review E , 2001. F. Wang and D. Landau. Efficient, multiple-range random walk algorithm to calculate the density of states. Physical review letters , 2001. G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, and G. Stoltz. Convergence of the Wang-Landau algorithm. Math. Comp. , 2015. C-E Bréhier (CNRS-Lyon) Convergence of ABP 4 / 31

  7. Biasing methods for diffusions Adaptive Biasing Force (ABF) √ � −∇ V ( X t )+ F t ( X t ) � dX t = dt + 2 dW t . Adaptive Biasing Potential (ABP) √ � −∇ V ( X t )+ ∇V t ( X t ) � dX t = dt + 2 dW t . References on ABF J. Comer, J. C. Gumbart, J. Hénin, T. Lelièvre, A. Pohorille, and C. Chipot. The adaptive biasing force method: Everything you always wanted to know but were afraid to ask. The Journal of Physical Chemistry B , 2014. T. Lelièvre, M. Rousset, and G. Stoltz. Long-time convergence of an adaptive biasing force method. Nonlinearity , 2008. The bias F t depends on the law L ( X t ) . C-E Bréhier (CNRS-Lyon) Convergence of ABP 5 / 31

  8. Biasing methods for diffusions Adaptive Biasing Force (ABF) √ � −∇ V ( X t )+ F t ( X t ) � dX t = dt + 2 dW t . Adaptive Biasing Potential (ABP) √ � −∇ V ( X t )+ ∇V t ( X t ) � dX t = dt + 2 dW t . We study a continuous time version of the ABP method proposed in B. Dickson, F. Legoll, T. Lelièvre, G. Stoltz, and P. Fleurat-Lessard. Free energy calculations: An efficient adaptive biasing potential method. J. Phys. Chem. B , 2010. The bias V t depends on the past trajectory of the process, X r for 0 ≤ r ≤ t . C-E Bréhier (CNRS-Lyon) Convergence of ABP 5 / 31

  9. Plan of the talk Motivations 1 The Adaptive Biasing Potential method 2 Consistency and elements of proof 3 Self-interacting diffusions Analysis of the ABP method Extensions 4 Examples Abstract framework C-E Bréhier (CNRS-Lyon) Convergence of ABP 6 / 31

  10. Biasing the potential Reaction coordinate: ξ : x ∈ T d �→ x 1 ∈ T . Biasing: for A : T → R , √ dX A ( X A t = −∇ � V − A ◦ ξ � t ) dt + 2 dW t . Ergodic invariant law is modified ∝ e − V ( x )+ A ( ξ ( x )) . Why it is useful: � weighted averages converge to φ d µ (consistency) convergence is faster when A is well-chosen: free energy can be made adaptive C-E Bréhier (CNRS-Lyon) Convergence of ABP 7 / 31

  11. The free energy A ⋆ : T → R is given by � e − A ⋆ ( z ) = T d − 1 Z ( 1 ) − 1 e − V ( z , x 2 ,..., x d ) dx 2 . . . dx d . Acceleration of the sampling = removing free energy barriers. Choosing A = A ⋆ : flat histogram for ξ ( X A ⋆ t ) � t 1 ) ds → δ ξ ( X A ⋆ t →∞ dz . t s 0 Adaptive algorithm: A t → t →∞ A ∞ ≈ A ⋆ . C-E Bréhier (CNRS-Lyon) Convergence of ABP 8 / 31

  12. The Adaptive Biasing Potential method Two unknowns: X t and A t . Dynamics for X t : √ � � dX t = −∇ V − A t ◦ ξ ( X t ) dt + 2 dW ( t ) . Computation of the bias A t : convolution of a kernel function K � e − A t ( z ) = � � T d K z , ξ ( x ) µ t ( dx ) , with the weighted empirical averages � t 0 e − A r ◦ ξ ( X r ) δ X r dr µ t = µ 0 + . � t 1 + 0 e − A r ◦ ξ ( X r ) dr C-E Bréhier (CNRS-Lyon) Convergence of ABP 9 / 31

  13. Convergence results √ � , e − A t ( z ) = � � � � dX t = −∇ V − A t ◦ ξ ( X t ) dt + 2 dW ( t ) K z , ξ ( x ) µ t ( dx ) � t 0 e − A r ◦ ξ ( X r ) δ X r dr µ t = µ 0 + . � t 0 e − A r ◦ ξ ( X r ) dr 1 + Theorem (Benaïm-B.) Almost surely, µ t → t →∞ µ , A t → t →∞ A ∞ , with µ ( dx ) = e − V ( x ) dx and e − A ∞ ( z ) = � T d K ( z , ξ ( · )) d µ . C-E Bréhier (CNRS-Lyon) Convergence of ABP 10 / 31

  14. Convergence results √ � , e − A t ( z ) = � � � � dX t = −∇ V − A t ◦ ξ ( X t ) dt + 2 dW ( t ) K z , ξ ( x ) µ t ( dx ) � t 0 e − A r ◦ ξ ( X r ) δ X r dr µ t = µ 0 + . � t 0 e − A r ◦ ξ ( X r ) dr 1 + Theorem (Benaïm-B.) Almost surely, µ t → t →∞ µ , A t → t →∞ A ∞ , with µ ( dx ) = e − V ( x ) dx and e − A ∞ ( z ) = � T d K ( z , ξ ( · )) d µ . consistent with non-adaptive versions ( A t = A ∀ t ≥ 0) A ∞ � = A ⋆ due to the kernel function. C-E Bréhier (CNRS-Lyon) Convergence of ABP 10 / 31

  15. Comments on the efficiency Convergence of histograms: almost surely � t 1 t →∞ e A ∞ ( z ) − A ⋆ ( z ) dz . δ ξ ( X s ) ds → t 0 Asymptotic variance: same as in non-adaptive version with A = A ∞ . The choice of the kernel function K is important. Assumption K : T × T → ( 0 , ∞ ) is of class C ∞ and positive. � K ( z , · ) dz = 1 . Examples: K ( z , ζ ) ∝ e − | z − ζ | 2 vs. K ( z , ζ ) = e − A ( z ) . 2 δ C-E Bréhier (CNRS-Lyon) Convergence of ABP 11 / 31

  16. Plan of the talk Motivations 1 The Adaptive Biasing Potential method 2 Consistency and elements of proof 3 Self-interacting diffusions Analysis of the ABP method Extensions 4 Examples Abstract framework C-E Bréhier (CNRS-Lyon) Convergence of ABP 12 / 31

  17. Role of the weighted empirical measures µ t √ dX t = −∇ � V − A t ◦ ξ � ( X t ) dt + 2 dW ( t ) , � t 0 e − A r ◦ ξ ( X r ) δ X r dr µ t = µ 0 + , � t 0 e − A r ◦ ξ ( X r ) dr 1 + � � � � � exp − A t ( z ) = K z , ξ ( x ) µ t ( dx ) . Considering A t = A ( µ t ) , may be interpreted as a self-interacting diffusion, with unknowns X t and µ t √ � � dX t = −∇ V − A ( µ t ) ◦ ξ ( X t ) dt + 2 dW ( t ) , � t 0 e − A ( µ r ) ◦ ξ ( X r ) δ X r dr µ t = µ 0 + � t 0 e − A ( µ r ) ◦ ξ ( X r ) dr 1 + C-E Bréhier (CNRS-Lyon) Convergence of ABP 13 / 31

  18. Self-interacting diffusions Classical formulation: √ dY t = −∇ V ( Y t , ν t ) dt + 2 dW t with � t 1 � � � V ( y , · ) d ν V ( y , ν ) = , ν t = ν 0 + δ Y r dr . 1 + t 0 M. Benaïm, M. Ledoux, and O. Raimond. Self-interacting diffusions. Probab. Theory Related Fields , 2002. Main differences: type of the coupling µ t in ABP is a weighted empirical distribution. C-E Bréhier (CNRS-Lyon) Convergence of ABP 14 / 31

  19. Stochastic approximation: the ODE method � t √ 1 � � dY t = −∇ V ( Y t , ν t ) dt + 2 dW t , ν t = ν 0 + δ Y r dr . 1 + t 0 The empirical distribution solves the random ODE 1 d ν t � � δ Y t − ν t dt = . 1 + t Asymptotic time-scale separation: slow-fast system ( t → ∞ ). A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approximations . Springer-Verlag, 1990. H. J. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and applications . Springer-Verlag, 2003. C-E Bréhier (CNRS-Lyon) Convergence of ABP 15 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend