exploring minijets beyond leading power
play

Exploring minijets beyond leading power Piotr Kotko Penn State - PowerPoint PPT Presentation

Exploring minijets beyond leading power Piotr Kotko Penn State University based on: supported by: DEC-2011/01/B/ST2/03643 P .K., A. Stasto, M. Strikman DE-FG02-93ER40771 arXiv:1608.00523 San Cristobal de las Casas, 12/01/2016 Introduction


  1. Exploring minijets beyond leading power Piotr Kotko Penn State University based on: supported by: DEC-2011/01/B/ST2/03643 P .K., A. Stasto, M. Strikman DE-FG02-93ER40771 arXiv:1608.00523 San Cristobal de las Casas, 12/01/2016

  2. Introduction Minijets in Pythia • The rise of the total cross section with energy in hadron-hadron collision is due to minijets; in collinear factorization � dx A dx B � � x A , x B ; µ 2 � � x A ; µ 2 � � x B ; µ 2 � d σ 2 jet = d ˆ σ ab → cd f a / A f b / B x A x B a , b , c , d • d σ 2 jet is divergent for p T → 0 � � p 2 α s d σ 2 jet T ∼ dp 2 p 4 T T • phenomenological regularization [T. Sjostrand, M. van Zijl, Phys.Rev.D 36 (1987) 2019] � � d σ ′ α s p 2 T + p 2 T 0 ( s ) 2 jet ∼ � 2 , dp 2 � p 2 T + p 2 T 0 ( s ) T with p T 0 ( s ) = p T 0 ( s / s 0 ) λ . 1

  3. Introduction Goal: calculate p T 0 ( s ) from some simple approach • the p T 0 ( s ) regularization takes the collinear factorization out of the leading power approximation • idea: use frameworks that have power corrections by including transverse momenta of incoming partons: High Energy (or k T ) Factorization (HEF) (or Color Glass Condensate, but saturation is not essential here) 2

  4. Introduction Goal: calculate p T 0 ( s ) from some simple approach • the p T 0 ( s ) regularization takes the collinear factorization out of the leading power approximation • idea: use frameworks that have power corrections by including transverse momenta of incoming partons: High Energy (or k T ) Factorization (HEF) (or Color Glass Condensate, but saturation is not essential here) Plan 1 High Energy Factorization 2 Non-leading-power extension of DDT (Diakonov-Dokshitzer-Troyan) formula for dijet in pp 3 Direct study of minijet suppression 4 Hard dijet observable sensitive to p T 0 ( s ) cutoff 5 Summary 2

  5. High Energy Factorization (HEF) Gluon production in HEF [S. Catani, M. Ciafaloni, F. Hautmann, Nucl.Phys. B366 (1991) 135-188] [J.C. Collins, R.K. Ellis, Nucl.Phys. B360 (1991) 3-30] d σ AB → gg = F g ∗ / A ( x A , k T A ; µ ) ⊗ d ˆ σ g ∗ g ∗ → gg ( x A , x B , k T A , k T B ; µ ) ⊗ F g ∗ / B ( x B , k T B ; µ ) k A k A p 1 F g ∗ /A p A = k A p 2 k B k B k B p B F g ∗ /B [E. Antonov, L. Lipatov, E. Kuraev, I. Cherednikov, Nucl.Phys. B721 (2005) 111-135] [P .K. JHEP 1407 (2014) 128] F g ∗ / H ( x H , k T H ; µ ) – Unintegrated Gluon Distribution (UGD) d ˆ σ g ∗ g ∗ → gg – hard process with off-shell gauge invariant amplitude 3

  6. High Energy Factorization (HEF) Gluon production in HEF [S. Catani, M. Ciafaloni, F. Hautmann, Nucl.Phys. B366 (1991) 135-188] [J.C. Collins, R.K. Ellis, Nucl.Phys. B360 (1991) 3-30] d σ AB → gg = F g ∗ / A ( x A , k T A ; µ ) ⊗ d ˆ σ g ∗ g ∗ → gg ( x A , x B , k T A , k T B ; µ ) ⊗ F g ∗ / B ( x B , k T B ; µ ) k A k A p 1 F g ∗ /A p A = k A p 2 k B k B k B p B F g ∗ /B [E. Antonov, L. Lipatov, E. Kuraev, I. Cherednikov, Nucl.Phys. B721 (2005) 111-135] [P .K. JHEP 1407 (2014) 128] F g ∗ / H ( x H , k T H ; µ ) – Unintegrated Gluon Distribution (UGD) d ˆ σ g ∗ g ∗ → gg – hard process with off-shell gauge invariant amplitude dp 2 T d φ � � � 1 z 1 dz 1 z 2 dz 2 d 2 � k TA d 2 � d σ AB → gg = k TB 64 π 2 ( z 1 + z 2 ) 2 � 2 + z 2 p 2 � 2 � � p T − � � z 1 K T T � 1 � 2 + � � 1 2 � � p T − � � z 1 , z 2 , � k TA , � � � z 1 S p 2 F g ∗ / A ( z 1 + z 2 , k TA ) F g ∗ / B K T T , k TB � � M � k TB � � z 2 S � g ∗ g ∗ → gg 3

  7. Unintegrated Gluon Distributions (UGDs) • Kimber-Martin-Ryskin (KMR) [M. Kimber, A. D. Martin, and M. Ryskin, Phys.Rev. D63, 114027 (2001)] ∂ F g ∗ / H ( x , k T , µ ) = [ f g / H ( x , k T ) T g ( k T , µ )] ∂ k 2 T � T , µ 2 � K 2 T g – the Sudakov form factor 4

  8. Unintegrated Gluon Distributions (UGDs) • Kimber-Martin-Ryskin (KMR) [M. Kimber, A. D. Martin, and M. Ryskin, Phys.Rev. D63, 114027 (2001)] ∂ F g ∗ / H ( x , k T , µ ) = [ f g / H ( x , k T ) T g ( k T , µ )] ∂ k 2 T � T , µ 2 � K 2 T g – the Sudakov form factor • Kwiecinski-Martin-Stasto (KMS) [J. Kwiecinski, Alan D. Martin, A.M. Stasto, Phys.Rev. D56 (1997) 3991-4006] BFKL + DGLAP corrections + kinematic constraint + running α s � x � k 2 � � x   � � q 2 z , q 2 z − q 2 T − k 2 z , k 2 � x T F θ T F   � 1 � ∞ � dq 2  k 2 z , k 2   T T T T F  + α s N c dz     � � � � T T x , k 2 x , k 2   F = F 0 +   T T q 2 � � π z  � q 2 T − k 2 �  k 2  � � 4 q 4 T + k 4  x T   T 0  T �   T      � x � x � 1 � � k 2  � � + α s P gg ( z ) − 2 N c T �    dq 2 z , q 2 z , k 2  + zP gq ( z ) Σ dz  T F  T T 2 π k 2 z  k 2    x   T T 0 Fitted to HERA data. [K. Kutak, S. Sapeta, Phys. Rev. D 86 (2012) 094043] 4

  9. Unintegrated Gluon Distributions (UGDs) • Kimber-Martin-Ryskin (KMR) [M. Kimber, A. D. Martin, and M. Ryskin, Phys.Rev. D63, 114027 (2001)] ∂ F g ∗ / H ( x , k T , µ ) = [ f g / H ( x , k T ) T g ( k T , µ )] ∂ k 2 T � T , µ 2 � K 2 T g – the Sudakov form factor • Kwiecinski-Martin-Stasto (KMS) [J. Kwiecinski, Alan D. Martin, A.M. Stasto, Phys.Rev. D56 (1997) 3991-4006] BFKL + DGLAP corrections + kinematic constraint + running α s � x � k 2 � � x   � � q 2 z , q 2 z − q 2 T − k 2 z , k 2 � x T F θ T F   � 1 � ∞ � dq 2  k 2 z , k 2   T T T T F  + α s N c dz     � � � � T T x , k 2 x , k 2   F = F 0 +   T T q 2 � � π z  � q 2 T − k 2 �  k 2  � � 4 q 4 T + k 4  x T   T 0  T �   T      � x � x � 1 � � k 2  � � + α s P gg ( z ) − 2 N c T �    dq 2 z , q 2 z , k 2  + zP gq ( z ) Σ dz  T F  T T 2 π k 2 z  k 2    x   T T 0 Fitted to HERA data. [K. Kutak, S. Sapeta, Phys. Rev. D 86 (2012) 094043] • CCFM • ... 4

  10. Non-leading-power extension of DDT Dokshitzer-Diakonov-Troyan (DDT) formula (leading power) [Y. Dokshitzer,D. Dyakonov, S. Troyan, Phys.Rep. 58 (1980) 269-395] � dx A d σ 2 jet dx B ∂ � x A , x B ; µ 2 � � � � � � � T , µ 2 �� x A ; K 2 x B ; K 2 T 4 K 2 = d ˆ σ gg → gg f g / A f g / B T T g dK 2 ∂ K 2 x A x B T T f g/A f g/A f g/A f g/A p A p A p A p A T g . . . . . . T g T g T g . . . . . . p B p B p B p B f g/B f g/B f g/B f g/B � T , µ 2 � K 2 – the Sudakov form factor. DDT applies when µ 0 ≪ K T ≪ µ . T g 5

  11. Non-leading-power extension of DDT Dokshitzer-Diakonov-Troyan (DDT) formula (leading power) [Y. Dokshitzer,D. Dyakonov, S. Troyan, Phys.Rep. 58 (1980) 269-395] � dx A d σ 2 jet dx B ∂ � x A , x B ; µ 2 � � � � � � � T , µ 2 �� x A ; K 2 x B ; K 2 T 4 K 2 = d ˆ σ gg → gg f g / A f g / B T T g dK 2 ∂ K 2 x A x B T T f g/A f g/A f g/A f g/A p A p A p A p A T g . . . . . . T g T g T g . . . . . . p B p B p B p B f g/B f g/B f g/B f g/B � T , µ 2 � K 2 – the Sudakov form factor. DDT applies when µ 0 ≪ K T ≪ µ . T g Improved DDT (IDDT) formula (beyond leading power) [P .K., A. Stasto, M. Strikman, arXiv:1608.00523] d σ ( IDDT ) = d σ ( IS ) 2 jet + d σ ( FS ) 2 jet 2 jet d σ ( IS ) � x A , x B , � � � � � T , µ 2 � x B , K 2 ⊗ T 3 K 2 2 jet = 2 F g ∗ / A ( x A , K T , µ ) ⊗ d ˆ σ g ∗ g → gg K T ⊗ f g / B T g d σ ( FS ) � � � x A , x B , � � � � � T , µ 2 � � T , µ 2 � x A ; K 2 x B ; K 2 K 2 ⊗ T 3 K 2 2 jet = 2 f g / A ⊗ d ˆ σ gg → gg ∗ K T ⊗ f g / B ⊗ T g T T g � T , µ 2 � � T , µ 2 � K 2 = ∂ T g K 2 /∂ K 2 T . There is a restriction K T ≤ µ . where T g 5

  12. Direct study of minijet suppression Inclusive dijets with Pythia: anti- k T with R = 0 . 5, rapidity [ − 4 , 4 ] 6

  13. Direct study of minijet suppression Inclusive dijets with Pythia: anti- k T with R = 0 . 5, rapidity [ − 4 , 4 ] 1e+20 pythia PS (soft QCD) Inclusive dijets p T > 2 GeV pythia PS+HAD (soft QCD) 1e+18 LO Collinear Factorization 1e+16 � S = 30.0 TeV (x10 9 ) 1e+14 d � /dp Tj [nb/GeV] � S = 20.0 TeV (x10 6 ) 1e+12 1e+10 � S = 14.0 TeV (x10 3 ) 1e+08 � S = 7.0 TeV 1e+06 Using GRV98 PDFs 10000 gg->gg channel 100 5 10 15 20 25 30 p Tj [GeV] 6

  14. Direct study of minijet suppression Inclusive dijets with HEF and IDDT 1e+20 HEF (KMR) Inclusive dijets p T > 2 GeV IDDT 1e+18 LO Collinear Factorization 1e+16 � S = 30.0 TeV (x10 9 ) 1e+14 d � /dp Tj [nb/GeV] � S = 20.0 TeV (x10 6 ) 1e+12 1e+10 � S = 14.0 TeV (x10 3 ) 1e+08 � S = 7.0 TeV 1e+06 Using GRV98 PDFs 10000 gg->gg channel 100 5 10 15 20 25 30 p Tj [GeV] 7

  15. Direct study of minijet suppression Inclusive dijets with HEF and IDDT 1e+22 HEF (KMR) Inclusive dijets p T > 2 GeV IDDT 1e+20 LO Collinear Factorization 1e+18 � S = 30.0 TeV (x10 9 ) 1e+16 d � /dp Tj [nb/GeV] � S = 20.0 TeV (x10 6 ) 1e+14 1e+12 � S = 14.0 TeV (x10 3 ) 1e+10 � S = 7.0 TeV 1e+08 Using GRV98 PDFs 1e+06 gg->gg channel 10000 2.5 3 3.5 4 4.5 5 p Tj [GeV] 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend