the mhv lagrangian and hidden wilson lines
play

The MHV Lagrangian and hidden Wilson lines Piotr Kotko IFJ PAN - PowerPoint PPT Presentation

INSTITUTE OF NUCLEAR PHYSICS THE HENRYK NIEWODNICZASKI POLISH ACADEMY OF SCIENCES The MHV Lagrangian and hidden Wilson lines Piotr Kotko IFJ PAN based on: P .K., A. Stasto, JHEP 1709 (2017) supported by: DEC-2011/01/B/ST2/03643


  1. INSTITUTE OF NUCLEAR PHYSICS THE HENRYK NIEWODNICZAŃSKI POLISH ACADEMY OF SCIENCES The MHV Lagrangian and hidden Wilson lines Piotr Kotko IFJ PAN based on: P .K., A. Stasto, JHEP 1709 (2017) supported by: DEC-2011/01/B/ST2/03643 DE-FG02-93ER40771 Light Cone 2018, May 14-18, 2018

  2. Outline Anna’s talk: Recursion relations for off-shell MHV currents contain an object ˜ J which has a structure exactly like on-shell MHV amplitude but with spinor products continued off-shell. • ˜ J can be constructed from a straight-infinite Wilson line along a polarization vector • On the other hand ˜ J corresponds to the so-called MHV vertices in the Cachazo-Svrcek-Witten (CSW) construction. What is the connection between the two? 1

  3. Outline Anna’s talk: Recursion relations for off-shell MHV currents contain an object ˜ J which has a structure exactly like on-shell MHV amplitude but with spinor products continued off-shell. • ˜ J can be constructed from a straight-infinite Wilson line along a polarization vector • On the other hand ˜ J corresponds to the so-called MHV vertices in the Cachazo-Svrcek-Witten (CSW) construction. What is the connection between the two? This talk: • Lagrangian for the CSW method (the light-front Yang-Mills Lagrangian after certain canonical field transformation) [P . Mansfield (2006)] • Exact solution to the field transformation – constructed from non-light-like Wilson lines, similar to those in ˜ J • Consequences 1

  4. MHV amplitudes Spinor algebra Spinor products: ˙ i λ β β ˜ i ˜ β � ij � = u − ( k i ) u + ( k j ) ≡ ǫ αβ λ α λ ˙ α [ ij ] = u + ( k i ) u − ( k j ) ≡ ǫ ˙ j , λ α ˙ j i ≡ u + ( k i ) , ˜ where u ± ( k i ) = 1 2 ( 1 ± γ 5 ) u ( k i ) and λ α λ ˙ α i ≡ u − ( k i ) . Momenta k i are light-like. Parke-Taylor amplitudes 1 � 12 � 4 � 1 − , 2 − , 3 + , . . . , n + � = M � 12 � � 23 � . . . � n 1 � 1 S.J. Parke, T.R. Taylor, Phys.Rev.Lett. 56, 2459 (1986) 2

  5. Cachazo-Svrcek-Witten (CSW) Method (1) General idea Glue any amplitude from the MHV amplitudes continued off-shell. 3

  6. Cachazo-Svrcek-Witten (CSW) Method (1) General idea Glue any amplitude from the MHV amplitudes continued off-shell. Off-shell continuation of spinors If k is light-like, we have α = λ k α ˜ α ˜ λ ˙ α k α ˙ λ k ˙ = ⇒ λ k α = k α ˙ q / [ kq ] α where q is auxiliary light-like momentum. If k is off-shell we define the off-shell continuation of spinor in the same way: λ ( ∗ ) α ˜ λ ˙ α k α = k α ˙ q 3

  7. Cachazo-Svrcek-Witten (CSW) Method (1) General idea Glue any amplitude from the MHV amplitudes continued off-shell. Off-shell continuation of spinors If k is light-like, we have α = λ k α ˜ α ˜ λ ˙ α k α ˙ λ k ˙ = ⇒ λ k α = k α ˙ q / [ kq ] α where q is auxiliary light-like momentum. If k is off-shell we define the off-shell continuation of spinor in the same way: λ ( ∗ ) α ˜ λ ˙ α k α = k α ˙ q MHV vertices + i − . . . + � ij � 4 . . . . . � 12 � � 23 � . . . � n 1 � ≡ . + . . . j − + The spinor products are made from off-shell spinors � ij � = ǫ αβ λ ( ∗ ) α λ ( ∗ ) β . i j 3

  8. Cachazo-Svrcek-Witten (CSW) Method (2) Example: NMHV amplitude M ( 1 − , 2 − , 3 − , 4 + , 5 + ) 2 − 2 − 2 − 1 − 1 − 3 − 3 − + + = 3 − − 1 − − 5 + 4 + 4 + 5 + 4 + 5 + 2 − 2 − 1 − 3 − 1 − 3 − + − + − 4 + 4 + 5 + 5 + 4

  9. Cachazo-Svrcek-Witten (CSW) Method (2) Example: NMHV amplitude M ( 1 − , 2 − , 3 − , 4 + , 5 + ) 2 − 2 − 2 − 1 − 1 − 3 − 3 − + + = 3 − − 1 − − 5 + 4 + 4 + 5 + 4 + 5 + 2 − 2 − 1 − 3 − 1 − 3 − + − + − 4 + 4 + 5 + 5 + The result: [ 45 ] 4 � 1 − , 2 − , 3 − , 4 + , 5 + � M = [ 12 ] [ 23 ] [ 34 ] [ 45 ] [ 51 ] 4

  10. Yang-Mills action on the light-front (1) Yang-Mills action where: � A µ = A µ S Y − M = − 1 F µν = ˆ g ′ [ D µ , D ν ] i a t a d 4 x Tr F µν F µν √ � t a , t b � 4 D µ = ∂ µ − ig ′ ˆ 2 f abc t c = i A µ 5

  11. Yang-Mills action on the light-front (1) Yang-Mills action where: � A µ = A µ S Y − M = − 1 F µν = ˆ g ′ [ D µ , D ν ] i a t a d 4 x Tr F µν F µν √ � t a , t b � 4 D µ = ∂ µ − ig ′ ˆ 2 f abc t c = i A µ Light-cone coordinates Basis vectors: 1 1 1 ε ± η = ( 1 , 0 , 0 , − 1 ) , ˜ η = ( 1 , 0 , 0 , 1 ) , ⊥ = ( 0 , 1 , ± i , 0 ) √ √ √ 2 2 2 Contravariant coordinates: v + = v · η , v − = v · ˜ η , v • = v · ε + v ⋆ = v · ε − ⊥ , ⊥ u · v = u + w − + u − w + − u • w ⋆ − u ⋆ w • Scalar product: � p + , p • , p ⋆ � x ≡ ( x − , x • , x ⋆ ) , p ≡ Three-vectors: 5

  12. Yang-Mills action on the light-front (2) Yang-Mills action in transverse fields only A · η = A + = 0 • Light cone gauge: • Integration of A − fields out of the action 6

  13. Yang-Mills action on the light-front (2) Yang-Mills action in transverse fields only A · η = A + = 0 • Light cone gauge: • Integration of A − fields out of the action � dx + � � S ( LC ) L ( LC ) + − + L ( LC ) ++ − + L ( LC ) + −− + L ( LC ) Y − M [ A • , A ⋆ ] = ++ −− 6

  14. Yang-Mills action on the light-front (2) Yang-Mills action in transverse fields only A · η = A + = 0 • Light cone gauge: • Integration of A − fields out of the action � dx + � � S ( LC ) L ( LC ) + − + L ( LC ) ++ − + L ( LC ) + −− + L ( LC ) Y − M [ A • , A ⋆ ] = ++ −− � L ( LC ) d 3 x Tr ˆ A • � ˆ + − [ A • , A ⋆ ] = − A ⋆ � A • � A • � L ( LC ) ++ − [ A • , A ⋆ ] = − 2 ig ′ d 3 x Tr γ x ˆ ∂ − ˆ A ⋆ , ˆ � A ⋆ � A ⋆ � L ( LC ) d 3 x Tr γ x ˆ ∂ − ˆ A • , ˆ −− + [ A • , A ⋆ ] = − 2 ig ′ � � A ⋆ � � A • � L ( LC ) ∂ − ˆ A • , ˆ ∂ − ˆ A ⋆ , ˆ ++ −− [ A • , A ⋆ ] = − g 2 d 3 x Tr ∂ − 2 − where γ x = ∂ − 1 γ x = ∂ − 1 − ∂ • , − ∂ ⋆ . 6

  15. The MHV action (1) Transformation of fields 1 ( A • , A ⋆ ) → ( B • , B ⋆ ) 1 P . Mansfield, JHEP 03 (2006) 037 7

  16. The MHV action (1) Transformation of fields 1 ( A • , A ⋆ ) → ( B • , B ⋆ ) 1 Transformation is canonical such that B • = B • [ A • ] � d 3 y δ B • c ( y ) ∂ − A ⋆ a ( x ) ∂ − B ⋆ a ( x ) = c ( y ) δ A • 1 P . Mansfield, JHEP 03 (2006) 037 7

  17. The MHV action (1) Transformation of fields 1 ( A • , A ⋆ ) → ( B • , B ⋆ ) 1 Transformation is canonical such that B • = B • [ A • ] � d 3 y δ B • c ( y ) ∂ − A ⋆ a ( x ) ∂ − B ⋆ a ( x ) = c ( y ) δ A • 2 The vertex (+ + − ) is removed L ( LC ) + − [ A • , A ⋆ ] + L ( LC ) ++ − [ A • , A ⋆ ] = L ( LC ) + − [ B • , B ⋆ ]   � δ B • a ( x )   � �  A • ( y )  D ⋆ , γ y ˆ d 3 y Tr  t c  c ( y ) = ω x B • a ( x )   δ A •     where ω x = ∂ • ∂ ⋆ ∂ − 1 − . 1 P . Mansfield, JHEP 03 (2006) 037 7

  18. The MHV action (2) Solution to the transformations in momentum space ∞ � ˜ a = ˜ ˜ ⊗ ˜ b 1 . . . ˜ A • B • Ψ a { b 1 ... b n } B • B • a + n b n n = 2 ∞ � ˜ a = ˜ Ω ab 1 { b 2 ... b n } ˜ ⊗ ˜ b 1 ˜ b 2 . . . ˜ A ⋆ B ⋆ B ⋆ B • B • a + n b n n = 2 8

  19. The MHV action (2) Solution to the transformations in momentum space ∞ � ˜ a = ˜ ˜ ⊗ ˜ b 1 . . . ˜ A • B • Ψ a { b 1 ... b n } B • B • a + n b n n = 2 ∞ � ˜ a = ˜ Ω ab 1 { b 2 ... b n } ˜ ⊗ ˜ b 1 ˜ b 2 . . . ˜ A ⋆ B ⋆ B ⋆ B • B • a + n b n n = 2 The MHV action � � ˜ B ⋆ � dx + � � S ( LC ) B • , ˜ L ( LC ) + − + L ( LC ) −− + + · · · + L ( LC ) = −− + ··· + + . . . Y − M 8

  20. The MHV action (2) Solution to the transformations in momentum space ∞ � ˜ a = ˜ ˜ ⊗ ˜ b 1 . . . ˜ A • B • Ψ a { b 1 ... b n } B • B • a + n b n n = 2 ∞ � ˜ a = ˜ Ω ab 1 { b 2 ... b n } ˜ ⊗ ˜ b 1 ˜ b 2 . . . ˜ A ⋆ B ⋆ B ⋆ B • B • a + n b n n = 2 The MHV action � � ˜ B ⋆ � dx + � � S ( LC ) B • , ˜ L ( LC ) + − + L ( LC ) −− + + · · · + L ( LC ) = −− + ··· + + . . . Y − M where the MHV vertex is: L ( LC ) −− + ··· + = ˜ V b 1 ... b n −− + ··· + ⊗ ˜ B ⋆ b 1 ˜ B ⋆ b 2 ˜ B • b 3 . . . ˜ B • b n � 2 � p + v ∗ 4 ˜ V −− + ··· + ( p 1 , . . . , p n ) = 1 ˜ n ! ( g ′ ) n − 1 1 21 p + ˜ v ∗ 1 n ˜ v ∗ n ( n − 1 ) ˜ v ∗ ( n − 1 )( n − 2 ) . . . ˜ v ∗ 21 2 � � � � i + p + j / p + v ∗ ( i )( j ) = − p • i + p + p • j / p + with ˜ v ( i )( j ) = − p ⋆ p ⋆ ∼ [ ij ] , ˜ ∼ � ij � . i j i j 8

  21. The diagrammatic content of transformations (1) Solution B • [ A • ] B • = + 1 1 1 + + + 1 + . . . s 2 s 2 s 3 s 2 s 3 s 2 s 3 • Vertical dashed lines – energy denominators:    , E p = p ⋆ p •  �      D 1 ... i = 2  E initial − E j       p + j ∈ intermediate • Triple gluon vertices – helicity ( − + +) . 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend