nuclear binding and o ff shell corrections in the emc e
play

Nuclear Binding and O ff -shell Corrections in the EMC E ff ect S. - PowerPoint PPT Presentation

Nuclear Binding and O ff -shell Corrections in the EMC E ff ect S. Kulagin INR Moscow, Russia R. Petti University of South Carolina, Columbia SC, USA Quantitative Challenges in EMC and SRC Research and Data-Mining December 4th, 2016,


  1. Nuclear Binding and O ff -shell Corrections in the EMC E ff ect S. Kulagin INR Moscow, Russia R. Petti University of South Carolina, Columbia SC, USA ”Quantitative Challenges in EMC and SRC Research and Data-Mining” December 4th, 2016, MIT, Cambridge, MA, USA Roberto Petti USC

  2. NUCLEAR MODEL ✦ GLOBAL APPROACH aiming to obtain a quantitative model covering the com- plete range of x and Q 2 ( S. Kulagin and R.P., NPA 765 (2006) 126; PRC 90 (2014) 045204 ): 1.2 ● Scale of nuclear processes (target frame) L I = ( Mx ) − 1 ANTISHADOWING Distance between nucleons d = (3 / 4 πρ ) 1 / 3 ∼ 1 . 2 Fm F 2 (A)/F 2 (D) 1.1 SHADOWING L I < d ● 1 For x > 0 . 2 nuclear DIS ∼ incoherent sum of contribu- tions from bound nucleons 0.9 L I � d NMC Ca/D ● EMC EFFECT 0.8 EMC Cu/D For x � 0 . 2 coherent e ff ects of interactions with few FERMI REGION E139 Fe/D nucleons are important 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Bjorken x ✦ DIFFERENT EFFECTS on parton distributions and structure functions included: q a/A = q p/A + q n/A + δ q MEC + δ q coh a = u, d, s..... a a a a ● q p ( n ) /A PDF in bound p(n) with Fermi Motion, Binding (FMB) and O ff -Shell e ff ect (OS) a ● δ q MEC nuclear Meson Exchange Current (MEC) correction a ● δ q coh contribution from coherent nuclear interactions: Nuclear Shadowing (NS) a Roberto Petti USC

  3. INCOHERENT NUCLEAR SCATTERING ✦ FERMI MOTION AND BINDING in nuclear parton distributions can be calcu- lated from the convolution of nuclear spectral function and (bound) nucleon PDFs: q a/A ( x, Q 2 ) = q p/A + q n/A a a 1 + p z � � � xq p/A x ′ q N ( x ′ , Q 2 , p 2 ) d ε d 3 p P ( ε , p ) = a M where x ′ = Q 2 / (2 p · q ) and p = ( M + ε , p ) and we dropped 1 /Q 2 terms for illustration purpose . ✦ Since bound nucleons are there appears dependence on the OFF-MASS-SHELL nucleon virtuality p 2 = ( M + ε ) 2 − p 2 and expanding PDFs in the small ( p 2 − M 2 ) /M 2 : � 1 + δ f ( x )( p 2 − M 2 ) /M 2 � q a ( x, Q 2 , p 2 ) ≈ q N a ( x, Q 2 ) . where we introduced a structure function of the NUCLEON: δ f ( x ) ✦ Hadronic/nuclear input: ● Proton/neutron SFs computed in NNLO pQCD + TMC + HT from fits to DIS data ● Realistic nuclear spectral function: mean-field P MF ( ε , p ) + correlated part P cor ( ε , p ) Roberto Petti USC

  4. � � � − � 1 + δ f ( x )( p 2 − M 2 ) /M 2 � F 2 ( x, Q 2 , p 2 ) ≈ F 2 ( x, Q 2 ) � . re OFF-MASS-SHELL 2 2 DESCRIPTION STRUCTURE FUNCTIONS OF NUCLEON � F 1 ( x, Q 2 ) , F 2 ( x, Q 2 ) , xF 3 ( x, Q 2 ) , ..... Distribution of partons in a nucleon � δ f ( x ) � � � � DESCRIPTION SPECTRAL/WAVE FUNCTION OF NUCLEUS P ( ε , p ) , Ψ ( p ) Distribution of bound nucleons ⇒ O ff -shell function measures the in-medium modification of bound nucleon Any isospin (i.e. δ f p ̸ = δ f n ) or flavor dependence ( δ f a ) in the o ff -shell function? Roberto Petti USC

  5. NUCLEAR SPECTRAL FUNCTION ✦ The description of the nuclear properties is embedded into the nuclear spectral function ✦ Nucleons occupy energy levels according to Fermi statistics and are distributed over momentum (Fermi motion) and energy states. In the model: MEAN FIELD n λ | φ λ ( p ) | 2 δ ( ε − ε λ ) � P MF ( ε , p ) = λ < λ F where sum over occupied levels with n λ occupation number. Applicable for small nucleon separation energy and momenta, | ε | < 50 MeV, p < 300 MeV/c in nuclear ground state drive the high-energy and ✦ CORRELATION EFFECTS high-momentum component of the nuclear spectrum, when | ε | increases � � ε + ( p + p 2 ) 2 �� P cor ( ε , p ) ≈ n rel ( p ) + E A − 2 − E A δ 2 M CM Roberto Petti USC

  6. IMPACT OF NN CORRELATIONS DIS Q 2 =5 GeV 2 1.2 KP model σ C / σ D 1.1 ✦ Impulse Approximation (IA) fails to quan- 1 titatively describe observed modifications 0.9 ✦ Instructive to drop P cor ( ε , p ) from spectral 1.2 σ Be / σ D function to estimate e ff ect of NN correla- KP model - IA tions 1.1 1 ✦ Significant change on structure functions 0.9 in clear disagreement with data indicates mean-field P MF ( ε , p ) alone not su ffi cient 1.2 σ 4He / σ D KP model - IA, MF only 1.1 = ⇒ Study NN correlations and refine 1 description of spectral function 0.9 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Bjorken x Roberto Petti USC

  7. PREDICTIONS FOR CHARGED LEPTON DIS 1.2 1.2 E03103 * C is * 1.03 KP model E03103(is) σ C / σ D 1.15 HERMES(is) KP model * C is 1.1 1.1 KP model (IA) * C is 1.05 σ ( 3 He)/ σ (D) 1 1 0.95 0.9 0.9 C/D JLab E03-103 He3/D JLab, HERMES 0.85 1.2 σ Be / σ D KP model (IA) 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Bjorken x 1.1 1.1 σ N / σ D 1 1.05 1 0.9 0.95 Be/D JLab E03-103 N/D HERMES 0.9 1.2 σ 4He / σ D C/D NMC 0.85 JLab E03103 * 0.98 1.1 0.8 HERMES NMC C/D KP model 1.1 σ Kr / σ D 1 1.05 1 0.9 He4/D JLab E03-103 0.95 0.9 0.8 Kr/D HERMES 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.85 Bjorken x 0.8 S. Kulagin and R.P., PRC 82 (2010) 054614 0.75 -2 -1 10 10 Bjorken x Roberto Petti USC

  8. SLAC E139 SLAC E139 (Be) SLAC E139 (C) SLAC E139 1.4 CERN NMC CERN NMC (Li) CERN NMC (C) CERN NMC (Al/C)*(C/D) JLab E03103 JLab E03103 (Be) DESY HERMES (N) KP model 1.3 KP model KP model JLab E03103 (C) KP model 1.2 1.1 D A /F 2 F 2 1 0.9 4 7 12 27 2 He 3 Li 6 C 13 Al 0.8 9 14 4 Be 7 N 0.7 SLAC E139 SLAC E139 (Fe) SLAC E139 (Ag) SLAC E139 (Au) 1.4 CERN NMC CERN EMC (Cu) CERN NMC (Sn/C)*(C/D) CERN NMC (Pb/C)*(C/D) KP model CERN BCDMS (Fe) KP model FNAL E665 (Pb) 1.3 DESY HERMES (Kr) KP model KP model 1.2 1.1 D A /F 2 1 F 2 0.9 0.8 40 56 108 197 20 Ca 26 Fe 47 Ag 79 Au 0.7 63 119 208 29 Cu 50 Sn 82 Pb 84 131 36 Kr 54 Xe 0.6 10 -4 10 -3 10 -2 0.1 0.3 0.5 0.7 0.9 10 -3 10 -2 0.1 0.3 0.5 0.7 0.9 10 -3 10 -2 0.1 0.3 0.5 0.7 0.9 10 -3 10 -2 0.1 0.3 0.5 0.7 0.9 Bjorken x Bjorken x Bjorken x Bjorken x Roberto Petti USC

  9. δ f ( x ) FROM A ≥ 4 NUCLEI AND DEUTERON 3 δ f(x) Kulagin-Petti 2.5 Global QCD fit to p, D (Paris w.f.) 2 1.5 1 0.5 0 -0.5 -1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x ✦ Precise determination of δ f ( x ) from RATIOS F A 2 /F B 2 from DIS o ff di ff erent nuclei, including SLAC, NMC, EMC, BCDMS, E665 data ( NPA 765 (2006) 126 ) ✦ Independent determination from global QCD fit to p and D data with DIS,DY, W ± /Z provides consistent results ( S. Alekhin, S. Kulagin and R.P., arXiv:1609.08463 [nucl-th] ) Roberto Petti USC

  10. INTERPRETATION OF δ f ( x ) Valence quark distribution in a covariant diquark spectator model (see S.Kulagin et.al., PRC50(1994)1154 ) x ( p 2 � 1 − x ) s Z d k 2 C φ q val ( x, p 2 ) = k 2 / Λ 2 � / Λ 2 � I Assume a single-scale quark distribution over the virtuality k 2 . The model gives a resonable description of the nucleon valence distribution for x > 0 . 2 I O ff -shell nucleon: C ! C ( p 2 ) , Λ ! Λ ( p 2 ) . The function δ f = ∂ ln q val / ∂ ln p 2 depends on c = ∂ ln C/ ∂ ln p 2 and λ = ∂ ln Λ 2 / ∂ ln p 2 . I Tune c and λ to reproduce the node δ f ( x 0 ) = 0 and the slope δ f 0 ( x 0 ) of phenomenological o ff -shell function. We obtain λ ⇡ 1 and c ⇡ � 2 . 3 . I The positive parameter λ suggests smaller in-medium scale Λ or larger nucleon core size R c = Λ � 1 (“swelling” of a bound nucleon). δ Λ 2 2 λ h p 2 � M 2 i � δ R c = � 1 Λ 2 = � 1 � � R c 2 M 2 � in-medium 208 Pb : δ R c /R c ⇠ 10% Deuteron : δ R c /R c ⇠ 2% Roberto Petti USC

  11. NUCLEAR EFFECTS IN RESONANCE REGION JLAB E03-103 (private comm. D. Gaskell) F 2 ratio Cross section ratio 1.8 1.6 σ ( 3 He)/ σ (D+p) 1.4 1.2 1 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Bjorken x ✦ Use Christy-Bosted SF parameterization for p and n in resonance region ✦ 3 He spectral function from exact Faddeev three-body calculation by Hannover group ( R.-W. Schulze and P. U. Sauer, Phys. Rev. C 48, (1993) 38 ) ✦ Apply nuclear corrections for 3 He/(D+p) as predicted from the DIS region to the cross-section in the resonance kinematics ⇒ Consistent treatment of nuclear e ff ects in DIS and resonance regions? = Roberto Petti USC

  12. CONSTRAINTS FROM SUM RULES ✦ Nuclear meson correction constrained by light-cone momentum balance and equations of motion. ( S. Kulagin, NPA 500 (1989) 653; S. Kulagin and R.P., NPA 765 (2006) 126; PRC 90 (2014) 045204 ) ✦ At high Q 2 (PDF regime) coherent nu- Phenomenological cross section + Effective cross section σ 0 clear corrections controlled by the e ff ective 10 scattering amplitudes, which can be con- strained by normalization sum rules: σ (mb) δ N OS val + δ N coh val = 0 a 0 − → δ N OS + δ N coh = 0 a 1 − → 1 1 val = A − 1 � A where N A 0 dxq − 0 /A = 3 and 1 = A − 1 � A N A 0 dxq − 1 /A = ( Z − N ) /A 1 1 10 100 Q 2 (GeV 2 ) Solve numerically in terms of δ f and virtuality v = ( p 2 − M 2 ) /M 2 (input) and obtain the e ff ective cross-section in the ( I = 0 , C = 1 ) state, as well as Re/Im of amplitudes = ⇒ Nuclear corrections to PDFs largely controlled by P ( ε , p ) AND δ f ( x ) Roberto Petti USC

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend