kramers type law for l
play

Kramers type law for L L evy noise induced transitions Peter - PowerPoint PPT Presentation

evy flights Kramers type law for L L evy noise induced transitions Peter Imkeller Ilya Pavlyukevich Humboldt-University of Berlin Department of Mathematics 4th Conference on Extreme Value Analysis , Gothenburg, 2005 Supported


  1. evy flights ∗ Kramers’ type law for L´ L´ evy noise induced transitions Peter Imkeller Ilya Pavlyukevich Humboldt-University of Berlin Department of Mathematics 4th Conference on Extreme Value Analysis , Gothenburg, 2005 ∗ Supported by the DFG Research Center Matheon (FZT86) in Berlin and the DFG Reaserch Project Stochastic Dynamics of Climate States

  2. K RAMERS ’ TYPE LAW FOR L´ 1 EVY FLIGHTS 1. Motivation Greenland ice-core data allows to reconstruct Earth’s climate up to 200.000 years before present. International projects: GRIP (3028 m), GISP2 (3053.44 m), NGRIP (3084.99 m)

  3. K RAMERS ’ TYPE LAW FOR L´ 2 EVY FLIGHTS 2. Paleo Proxy Data. Dansgaard-Oeschger Events Paleo Data Proxies: Oxygen isotopes, dust, volcanic markers etc. Global climate during the last glacial ( ∼ 120 000 -10 000 b. p.) has experienced at least 20 abrupt and large-amplitude shifts (Dansgaard-Oeschger events). − 34 − −34 0 � 0 17 20 1 19 14 12 16 8 11 3 15 4 7 18 10 6 13 − 38 5 2 ∆ T −38 9 �� � − 42 −42 − 20 0 100 100 80 60 40 20 0 80 60 20 40 Age (thousands of years before present) • rapid warming by 5-10 ◦ C within at most a few decades • plateau phase with slow cooling lasting several centuries Simulations: Ganopolsky/Rahmstorf, • rapid drop to cold stadial conditions Potsdam Institute for Climate Impact Research

  4. K RAMERS ’ TYPE LAW FOR L´ 3 EVY FLIGHTS 3. Paleo Proxy Data. Detailed Look. The calcium (Ca) signal from the GRIP ice-core: about 80,000 data-points from 11 kyr to 91 kyr before present. Typical interjump time: 1000 – 2000 years, mean waiting time ∼ 1470 years What triggers the transitions? Langevin equation for climate dynamics dX ε t = − U ′ ( X ε t ) dt + ε dL t U – double-well potential, wells correspond to the climate states. P . Ditlevsen ( Geophys. Res. Lett. 1999 ): spectral analysis of the data. Noise L has α -stable component with α ≈ 1 . 75 .

  5. K RAMERS ’ TYPE LAW FOR L´ 4 EVY FLIGHTS 4. Object of Study. Simple System with L´ evy Noise Small noise ( ε ↓ 0 ) asymptotics of transition times for systems with L´ evy noise � t X ε U ′ ( X ε t = x − s − ) ds + εL t , ε ↓ 0 . 0 • L — α -stable symmetric L´ evy motion ( 0 < α < 2 ) + Brownian Motion U(x) Potential U ∈ C (3) ( R ) : • U ′ ( x ) x ≥ 0 • U ′ ( x ) = 0 iff x = 0 • U ′′ (0) = M > 0 x −b a σ ( ε ) = inf { t ≥ 0 : X ε t / ∈ [ − b, a ] } , a, b < ∞ ( b = ∞ ) 0.2 5 10 15 20 25 30 -0.2 -0.4 -0.6 Ref.: P . Imkeller, I. Pavlyukevich, arXiv:math.PR/0409246 (2004)

  6. K RAMERS ’ TYPE LAW FOR L´ 5 EVY FLIGHTS 5. The Driving Process L L – symmetric α -stable L´ evy process (plus Brownian motion). Marginal laws determined by L´ evy–Hinˇ cin’s formula � � − d � dy 2 λ 2 + ( e iλy − 1 − iλy I {| y | ≤ 1 } ) E e iλL 1 = exp , | y | 1+ α R \{ 0 } α ∈ (0 , 2) • Gaussian variance d ≥ 0 dy • L´ evy measure ν ( dy ) = | y | 1+ α , y � = 0 • ν ( R ) = ∞ ⇔ countably many (small) jumps on any finite time interval, jump times are dense � − d � 2 λ 2 − c ( α ) | λ | α E e iλL 1 = exp . c ( α ) → ∞ , α ↑ 2

  7. K RAMERS ’ TYPE LAW FOR L´ 6 EVY FLIGHTS 6. Symmetric α –stable L´ evy process L 6 1 4 0.5 5 10 15 20 2 -0.5 -1 5 10 15 20 -1.5 -2 α = 0 . 75 α = 1 . 75 1 1 α = 1 Cauchy process 1 + x 2 π 1 2 πe − x 2 √ α = 2 Brownian motion 2 In the physical literature: L´ evy Flights In a broader sense: Anomalous Diffusion

  8. K RAMERS ’ TYPE LAW FOR L´ 7 EVY FLIGHTS 7. Exit Time. Results Theorem 1. There exist positive constants ε 0 , γ , δ , and C > 0 such that for 0 < ε ≤ ε 0 the following asymptotics holds � 1 � ε α a α + 1 � � e − u (1+ Cε δ ) (1 − Cε δ ) ≤ P ≤ e − u (1 − Cε δ ) (1 + Cε δ ) σ ( ε ) > u x b α α uniformly for all x ∈ [ − b + ε γ , a − ε γ ] and u ≥ 0 . Theorem 2. There exist positive constants ε 0 , γ and δ such that for 0 < ε ≤ ε 0 the following asymptotics holds � 1 � − 1 E x σ ( ε ) = α a α + 1 (1 + O ( ε δ )) ε α b α uniformly for all x ∈ [ − b + ε γ , a − ε γ ] .

  9. K RAMERS ’ TYPE LAW FOR L´ 8 EVY FLIGHTS 8. Probabilistic Approach L t = ξ ε t + η ε t dy dy ν ε ν ε ξ ( dy ) = I {| y |≤ 1 √ ε } ( y ) η ( dy ) = I {| y | > 1 √ ε } ( y ) | y | 1+ α | y | 1+ α � ∞ | y | 1+ α = 2 dy αε α/ 2 = β ε ν ε ν ε ξ ( R ) = ∞ η ( R ) = 2 1 / √ ε t ) | ≤ √ ε . εξ ε is a sum of BM of intensity ε and a small-jumps process, | ∆( εξ ε t ) | > √ ε εη ε is a compound Poisson process, | ∆( εη ε εξ ε and εη ε are independent.

  10. K RAMERS ’ TYPE LAW FOR L´ 9 EVY FLIGHTS 9. The Small- and Large-Jump Parts 0 = τ 0 , τ 1 , τ 2 , . . . arrival times of η ε T k = τ k − τ k − 1 independent i.d. inter-arrival times W k = η ε τ k − η ε τ k − independent i.d. jumps W k ∼ 1 ν ε T k ∼ exp( β ε ) η ( · ) β ε � x E T k = 1 = α 1 P ( W k ≤ x ) = 1 dy √ ε } ( y ) I {| y | > 1 ε α/ 2 | y | 1+ α β ε 2 β ε −∞ Between the big jumps X ε is driven by εξ ε : � t X ε U ′ ( X ε s − ) ds + εξ ε t = x − t , t ∈ [0 , τ 1 ) , 0 � t U ′ ( Y ε Y t = x − s ) ds. 0 On inter-jump intervals X ε is Y perturbed by εξ ε .

  11. K RAMERS ’ TYPE LAW FOR L´ 10 EVY FLIGHTS 10. Behaviour on the Intervals between Big Jumps Y t ˙ Y t = − U ′ ( Y t ) R( ) ε T 1 γ T 1 ∼ exp( β ε ) ε −ε γ � � � � t − Y t | ≥ ε γ t | ≥ ε γ | X ε | εξ ε sup ≤ P sup P 2 C [0 ,T 1 ) [0 ,T 1 ) � ∞ � � t | ≥ ε γ β ε e − β ε u du ≤ e − 1 /ε δ | εξ ε ≤ sup P C [0 ,u ) 0 � x � x � δ dy dy dy T ( x, ε ) = | U ′ ( y ) | ≈ | U ′ ( y ) | + My ε γ / 2 ε γ / 2 δ ≈ Const + γ M | ln ε | ≤ R ( ε ) = O ( | ln ε | )

  12. K RAMERS ’ TYPE LAW FOR L´ 11 EVY FLIGHTS 11. Predominant Behaviour X ε t a 0.6 ε W 3 0.4 ε W 2 0.2 0 1 2 3 4 5 ε W 1 -0.2 −b τ τ τ 1 2 3 E T k = 1 β ε = α 2 ε − α/ 2 Expected inter-jump time polynomial in ε Relaxation time R ( ε ) = O ( | ln ε | ) logarithmic in ε X ε is driven by “small jumps” εξ ε Between big jumps Deviation probability small Typically, X ε jumps from a neighbourhood of 0 by εW k at τ k . ⇒ Typically, X ε exits I = [ − b, a ] by jumping at times τ k .

  13. K RAMERS ’ TYPE LAW FOR L´ 12 EVY FLIGHTS 12. Exit Time Law. Heuristic Proof of Theorem 2 τ k = T 1 + T 2 + · · · + T k , E T 1 = 1 /β ε � 1 �� ∞ � ∞ � y 1+ α = ε α ∈ [ − b, a ]) = 1 dy a α + 1 � P ( εW 1 / + b α β ε αβ ε a b ε ε ∞ � E x σ ( ε ) ≈ E τ k · P ( σ ( ε ) = τ k ) k =1 ∞ � ≈ k · E T 1 · P ( εW 1 ∈ I, . . . , εW k − 1 ∈ I, εW k / ∈ I ) k =1 ∞ ∈ I )] k − 1 · P ( εW 1 / � = k · E T 1 · [1 − P ( εW 1 / ∈ I ) k =1 � 1 � − 1 = P ( εW 1 / ∈ I ) 1 ∈ I ) 2 = α a α + 1 ε α b α β ε P ( εW 1 /

  14. K RAMERS ’ TYPE LAW FOR L´ 13 EVY FLIGHTS 13. Exponential Exit. Heuristic Proof of Theorem 1 τ k = T 1 + T 2 + · · · + T k ∼ Gamma ( β ε , k ) P ( τ k ∈ [ t, t + dt ]) = β ε e − β ε t ( β ε t ) k − 1 ( k − 1)! dt � 1 �� ∞ � ∞ � ∈ [ − b, a ]) = 1 y 1+ α = 1 dy a α + 1 � 2 ε α/ 2 P ( εW 1 / + b α β ε a b ε ε � 1 � ε α � a α + 1 � σ ( ε ) > u P x b α α ∞ � 1 � � ε α � a α + 1 � ≈ τ k > u · P x ( σ ( ε ) = τ k ) P b α α k =1 ∞ � 1 � � ε α � a α + 1 � ≈ τ k > u · P ( εW 1 ∈ I, . . . , εW k − 1 ∈ I, εW k / ∈ I ) P b α α k =1 = exp ( − u )

  15. K RAMERS ’ TYPE LAW FOR L´ 14 EVY FLIGHTS 14. Comparison with Gaussian Case U(x) U(x) h = U(−b) < U(a) h = U(−b) < U(a) h h x x −b a −b a � t � t ˆ 0 U ′ ( ˆ X ε X ε X ε 0 U ′ ( X ε t = x − s ) ds + εW t t = x − s − ) ds + εL t Freidlin–Wentzell (large deviations): x ( e (2 h − δ ) /ε 2 < ˆ σ < e (2 h + δ ) /ε 2 ) → 1 1 1 x ( ε α − δ < σ < ε α + δ ) → 1 P P Kramers’ law (’40, Williams, Bovier): ε √ π U ′′ (0) e 2 h/ε 2 | U ′ ( − b ) | √ E x σ ≈ α ε α [ 1 a α + 1 b α ] − 1 E x ˆ σ ≈ Exponential exit (Day, Bovier) x ( σ σ ˆ E x σ > u ) ∼ exp ( − u ) P x ( σ > u ) ∼ exp ( − u ) P E x ˆ L´ evy motion driven SDE ‘jumps out’ Diffusion ‘climbs up and out’

  16. K RAMERS ’ TYPE LAW FOR L´ 15 EVY FLIGHTS 15. Double-well Potential � t X ε U ′ ( X ε t = x − s − ) ds + εL t , ε ↓ 0 . 0 • L — α -stable symmetric L´ evy motion ( 0 < α < 2 ) + Brownian Motion U(x) U(−p) < U(q) Potential U ∈ C (3) ( R ) : • U ′ ( − p ) = U ′ (0) = U ′ ( q ) = 0 −p q x • U ′′ ( − p ) , U ′′ ( q ) > 0 , U ′′ (0) < 0 • | U ′ ( x ) | > c 1 | x | 1+ c 2 , x → ±∞ 0.6 0.4 0.2 10 20 30 40 50 -0.2 -0.4 -0.6 Main inconvenience: Saddle Point 0 , characteristic boundary U ′′ (0) | U ′′ ( q ) | e 2 | U ( q ) | /ε 2 2 π √ Gaussian Case: E x ˆ σ ≈

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend