geometric kramers fokker planck operators with boundary
play

Geometric Kramers-Fokker-Planck operators with boundary Francis - PowerPoint PPT Presentation

Geometric Kramers- Fokker- Planck operators with boundary conditions Geometric Kramers-Fokker-Planck operators with boundary Francis Nier, conditions IRMAR, Univ. Rennes 1 The Francis Nier, problem IRMAR, Univ. Rennes 1 Main


  1. Geometric Kramers- Fokker- Planck operators with boundary conditions Geometric Kramers-Fokker-Planck operators with boundary Francis Nier, conditions IRMAR, Univ. Rennes 1 The Francis Nier, problem IRMAR, Univ. Rennes 1 Main results Applications Elements of proof Microlocal analysis and spectral theory in honor of J. Sj¨ ostrand CIRM sept. 26th 2013

  2. Outline Geometric Kramers- Fokker- Planck operators with boundary conditions Francis Nier, IRMAR, Univ. Presentation of the problem Rennes 1 Main results The problem Applications Main Elements of proofs results Applications Elements of proof

  3. Geometric Kramers- Fokker- Planck operators with boundary conditions Raoul Bott: Morse theory indomitable (IHES 1988) Francis Nier, IRMAR, Univ. Rennes 1 The problem Main results Applications Elements of proof

  4. Geometric Kramers-Fokker-Planck operators Geometric Kramers- Fokker- In the euclidean space, the operator Planck operators P ± = ± p .∂ q − ∂ q V ( q ) .∂ p + − ∆ p + | p | 2 with x = ( q , p ) ∈ Ω × R d , boundary 2 conditions Francis is associated with the Langevin process Nier, IRMAR, Univ. dq = pdt , dp = − ∂ q V ( q ) dt − pdt + dW Rennes 1 The problem Q = Q ⊔ ∂ Q riem. mfld with bdy , X = T ∗ Q , ∂ X = T ∗ ∂ Q Q . Main Metric g = g ij ( q ) dq i dq j , g − 1 = ( g ij ) results Applications − ∆ p + | p | 2 Elements q P ± , Q , g = ±Y E + , ∆ p = g ij ( q ) ∂ p i ∂ p j of proof 2 | p | 2 = g ij ( q ) p i p j q E ( q , p ) = , 2 2 Y E = g ij ( q ) p i ∂ q j − 1 2 ∂ q k g ij ( q ) p i p j ∂ p k = g ij ( q ) p i e j , e j = ∂ q j + Γ ℓ ij p ℓ ∂ p j . acting on C ∞ ( X ; f ) . P ± , Q , g = scalar part of Bismut’s hypoelliptic Laplacian.

  5. Geometric Kramers-Fokker-Planck operators Geometric Kramers- Fokker- In the euclidean space, the operator Planck operators P ± = ± p .∂ q − ∂ q V ( q ) .∂ p + − ∆ p + | p | 2 with x = ( q , p ) ∈ Ω × R d , boundary 2 conditions Francis is associated with the Langevin process Nier, IRMAR, Univ. dq = pdt , dp = − ∂ q V ( q ) dt − pdt + dW Rennes 1 The problem Q = Q ⊔ ∂ Q riem. mfld with bdy , X = T ∗ Q , ∂ X = T ∗ ∂ Q Q . Main Metric g = g ij ( q ) dq i dq j , g − 1 = ( g ij ) results Applications − ∆ p + | p | 2 Elements q P ± , Q , g = ±Y E + , ∆ p = g ij ( q ) ∂ p i ∂ p j of proof 2 | p | 2 = g ij ( q ) p i p j q E ( q , p ) = , 2 2 Y E = g ij ( q ) p i ∂ q j − 1 2 ∂ q k g ij ( q ) p i p j ∂ p k = g ij ( q ) p i e j , e j = ∂ q j + Γ ℓ ij p ℓ ∂ p j . acting on C ∞ ( X ; f ) . P ± , Q , g = scalar part of Bismut’s hypoelliptic Laplacian.

  6. A simple case Geometric Kramers- Fokker- Take Q = ( −∞ , 0)] with g = ( dq 1 ) 2 . Planck operators p 1 with boundary conditions Francis Nier, IRMAR, Univ. Rennes 1 (0 , 0) q 1 The problem X Main ∂ X results Applications Elements of proof Specular reflection: u (0 , − p 1 ) = u (0 , p 1 ) for p 1 > 0 . It can be written γ odd u = 0 with γ odd u = u (0 , p 1 ) − u (0 , − p 1 ) . 2 Absorption: u (0 , p 1 ) = 0 for p 1 < 0 . It can be written γ odd u = sign( p 1 ) γ ev u with γ ev u = u (0 , p 1 )+ u (0 , − p 1 ) . 2

  7. A simple case Geometric Kramers- Fokker- Take Q = ( −∞ , 0)] with g = ( dq 1 ) 2 . Planck operators p 1 with boundary conditions Francis Nier, IRMAR, Univ. Rennes 1 (0 , 0) q 1 The problem X Main ∂ X results Applications Elements of proof Specular reflection: u (0 , − p 1 ) = u (0 , p 1 ) for p 1 > 0 . It can be written γ odd u = 0 with γ odd u = u (0 , p 1 ) − u (0 , − p 1 ) . 2 Absorption: u (0 , p 1 ) = 0 for p 1 < 0 . It can be written γ odd u = sign( p 1 ) γ ev u with γ ev u = u (0 , p 1 )+ u (0 , − p 1 ) . 2

  8. General BC Metric locally on ∂ Q : ( dq 1 ) 2 ⊕ ⊥ m ( q 1 , q ′ ) . Consider f -valued functions, f Hilbert Geometric Kramers- space. Fokker- � q 1 = 0 � Planck Let j be a unitary involution in f and define along ∂ X = : operators with γ odd = Π odd γ = γ ( q ′ , p 1 , p ′ ) − j γ ( q ′ , − p 1 , p ′ ) boundary , conditions 2 Francis γ ev = Π ev γ = γ ( q ′ , p 1 , p ′ ) + j γ ( q ′ , − p 1 , p ′ ) Nier, . IRMAR, 2 Univ. Rennes 1 � Let the boundary condition on the trace γ u = u ∂ X be � The problem γ odd u = ± sign( p 1 ) A γ ev u , Π ev A = A Π ev . Main results Formal integration by part Applications �∇ p u � 2 L 2 ( X , dqdp ; f ) + �| p | q u � 2 � ± 1 L 2 ( X , dqdp ; f ) Elements | γ u | ( q ′ , p ) 2 p 1 dq ′ dp Re � u , P ± , Q , g u � = of proof 2 2 ∂ X �∇ p u � 2 L 2 ( X , dqdp ; f ) + �| p | q u � 2 L 2 ( X , dqdp ; f ) = + Re � γ ev u , A γ ev u � L 2 ( ∂ X , | p 1 | dq ′ dp ; f ) . 2 � �� � Assumptions: A = A ( q , | p | q ) is local in q and | p | q (local elastic collision at the boundary); A ( q , | p | q ) ∈ L ( L 2 ( S ∗ ∂ Q Q , | ω 1 | dq ′ d ω ; f )) with � A ( q , r ) � ≤ C unif. either Re A ( q , r ) ≥ c A > 0 unif. or A ( q , r ) ≡ 0 .

  9. General BC Metric locally on ∂ Q : ( dq 1 ) 2 ⊕ ⊥ m ( q 1 , q ′ ) . Consider f -valued functions, f Hilbert Geometric Kramers- space. Fokker- � q 1 = 0 � Planck Let j be a unitary involution in f and define along ∂ X = : operators with γ odd = Π odd γ = γ ( q ′ , p 1 , p ′ ) − j γ ( q ′ , − p 1 , p ′ ) boundary , conditions 2 Francis γ ev = Π ev γ = γ ( q ′ , p 1 , p ′ ) + j γ ( q ′ , − p 1 , p ′ ) Nier, . IRMAR, 2 Univ. Rennes 1 � Let the boundary condition on the trace γ u = u ∂ X be � The problem γ odd u = ± sign( p 1 ) A γ ev u , Π ev A = A Π ev . Main results Formal integration by part Applications �∇ p u � 2 L 2 ( X , dqdp ; f ) + �| p | q u � 2 � ± 1 L 2 ( X , dqdp ; f ) Elements | γ u | ( q ′ , p ) 2 p 1 dq ′ dp Re � u , P ± , Q , g u � = of proof 2 2 ∂ X �∇ p u � 2 L 2 ( X , dqdp ; f ) + �| p | q u � 2 L 2 ( X , dqdp ; f ) = + Re � γ ev u , A γ ev u � L 2 ( ∂ X , | p 1 | dq ′ dp ; f ) . 2 � �� � Assumptions: A = A ( q , | p | q ) is local in q and | p | q (local elastic collision at the boundary); A ( q , | p | q ) ∈ L ( L 2 ( S ∗ ∂ Q Q , | ω 1 | dq ′ d ω ; f )) with � A ( q , r ) � ≤ C unif. either Re A ( q , r ) ≥ c A > 0 unif. or A ( q , r ) ≡ 0 .

  10. General BC Metric locally on ∂ Q : ( dq 1 ) 2 ⊕ ⊥ m ( q 1 , q ′ ) . Consider f -valued functions, f Hilbert Geometric Kramers- space. Fokker- � q 1 = 0 � Planck Let j be a unitary involution in f and define along ∂ X = : operators with γ odd = Π odd γ = γ ( q ′ , p 1 , p ′ ) − j γ ( q ′ , − p 1 , p ′ ) boundary , conditions 2 Francis γ ev = Π ev γ = γ ( q ′ , p 1 , p ′ ) + j γ ( q ′ , − p 1 , p ′ ) Nier, . IRMAR, 2 Univ. Rennes 1 � Let the boundary condition on the trace γ u = u ∂ X be � The problem γ odd u = ± sign( p 1 ) A γ ev u , Π ev A = A Π ev . Main results Formal integration by part Applications �∇ p u � 2 L 2 ( X , dqdp ; f ) + �| p | q u � 2 � ± 1 L 2 ( X , dqdp ; f ) Elements | γ u | ( q ′ , p ) 2 p 1 dq ′ dp Re � u , P ± , Q , g u � = of proof 2 2 ∂ X �∇ p u � 2 L 2 ( X , dqdp ; f ) + �| p | q u � 2 L 2 ( X , dqdp ; f ) = + Re � γ ev u , A γ ev u � L 2 ( ∂ X , | p 1 | dq ′ dp ; f ) . 2 � �� � Assumptions: A = A ( q , | p | q ) is local in q and | p | q (local elastic collision at the boundary); A ( q , | p | q ) ∈ L ( L 2 ( S ∗ ∂ Q Q , | ω 1 | dq ′ d ω ; f )) with � A ( q , r ) � ≤ C unif. either Re A ( q , r ) ≥ c A > 0 unif. or A ( q , r ) ≡ 0 .

  11. General BC Metric locally on ∂ Q : ( dq 1 ) 2 ⊕ ⊥ m ( q 1 , q ′ ) . Consider f -valued functions, f Hilbert Geometric Kramers- space. Fokker- � q 1 = 0 � Planck Let j be a unitary involution in f and define along ∂ X = : operators with γ odd = Π odd γ = γ ( q ′ , p 1 , p ′ ) − j γ ( q ′ , − p 1 , p ′ ) boundary , conditions 2 Francis γ ev = Π ev γ = γ ( q ′ , p 1 , p ′ ) + j γ ( q ′ , − p 1 , p ′ ) Nier, . IRMAR, 2 Univ. Rennes 1 � Let the boundary condition on the trace γ u = u ∂ X be � The problem γ odd u = ± sign( p 1 ) A γ ev u , Π ev A = A Π ev . Main results Formal integration by part Applications �∇ p u � 2 L 2 ( X , dqdp ; f ) + �| p | q u � 2 � ± 1 L 2 ( X , dqdp ; f ) Elements | γ u | ( q ′ , p ) 2 p 1 dq ′ dp Re � u , P ± , Q , g u � = of proof 2 2 ∂ X �∇ p u � 2 L 2 ( X , dqdp ; f ) + �| p | q u � 2 L 2 ( X , dqdp ; f ) = + Re � γ ev u , A γ ev u � L 2 ( ∂ X , | p 1 | dq ′ dp ; f ) . 2 � �� � Assumptions: A = A ( q , | p | q ) is local in q and | p | q (local elastic collision at the boundary); A ( q , | p | q ) ∈ L ( L 2 ( S ∗ ∂ Q Q , | ω 1 | dq ′ d ω ; f )) with � A ( q , r ) � ≤ C unif. either Re A ( q , r ) ≥ c A > 0 unif. or A ( q , r ) ≡ 0 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend