a fokker planck model in for two interacting populations
play

A Fokker-Planck Model in for Two Interacting Populations of Neurons - PowerPoint PPT Presentation

A Fokker-Planck Model in for Two Interacting Populations of Neurons J.A. Carrillo 1 , S. Cordier 2 , S.Mancini 2 1 ICREA, Universitat Aut` onoma de Barcelona 2 MAPMO, F ed eration Denis Poisson, Universit e dOrl eans Stochastic


  1. A Fokker-Planck Model in for Two Interacting Populations of Neurons J.A. Carrillo 1 , S. Cordier 2 , S.Mancini 2 1 ICREA, Universitat Aut` onoma de Barcelona 2 MAPMO, F´ ed´ eration Denis Poisson, Universit´ e d’Orl´ eans Stochastic Models in Neuroscience CIRM, 18 January 2010

  2. Outline • The Wilson-Cowan and Deco-Mart ` ı model • The stochastic ODE system and its Fokker-Planck equation • Stationnary solution (equilibrium) • Time dependent problem and Generalized relative entropy • Numerical simulations • Slow-fast behavior

  3. Wilson-Cowan model ⊲ Two neurons populations/cells ⊲ Neglect spatial interactions ⊲ Time dynamics E ( t ) = excitatory cells prop. activ/unit time at time t I ( t ) = inhibitory cells prop. activ/unit time at time t Model : The value of E ( t + τ ) and I ( t + τ ) is proportional to number of cells which are sensitive (not refractory) and which also receive at least threshold, θ , excitation at time t. [WC] H.R. Wilson, J.D. Cowan, Biophysical Journal (1972)

  4. Wilson-Cowan, the model ⊲ Excit./Inhibit. sensitives prop. of cells ( r refractory time): � t � t t − r E ( t ′ ) dt ′ , t − r I ( t ′ ) dt ′ 1 − 1 − ⊲ Sub-pop. prop. receiving at least θ excitation/time, as a fonction of the mean excitation x ( t ) = > response fonction (sigmoide): � x S ( x ) = θ D ( θ ) dθ , D ( θ ) = thresholds distribution ⊲ α ( t ) decreasing rate of stimuli effect, c i coeff.connexion, I e ( t ) , I i ( t ) stimuli; � t �� t � � � t − r E ( t ′ ) dt ′ −∞ α ( t − t ′ )[ c 1 E ( t ′ ) − c 2 I ( t ′ ) + I e ( t ′ )] dt ′ 1 − S e E ( t + τ ) = � t �� t � � � t − r I ( t ′ ) dt ′ −∞ α ( t − t ′ )[ c 3 E ( t ′ ) − c 4 I ( t ′ ) + I i ( t ′ )] dt ′ I ( t + τ ) = 1 − S i � �� � x ( t )

  5. Wilson-Cowan, simplified Time averaging ⇒ : � t � t t − r E ( t ′ ) dt ′ → rE ( t ) , −∞ α ( t − t ′ ) E ( t ′ ) dt ′ → kE ( t ) First order expansion in τ = 0 ⇒ τ dE dt = − E + (1 − rE ) S e ( kc 1 E − kc 2 I + kI e ( t )) τ ′ dI dt = − I + (1 − rI ) S i ( k ′ c 3 E − k ′ c 4 I + k ′ I i ( t )) ⊲ Hysteresis multiple loops and limit cycles. ⊲ Results are independent of the choice of the sigmoide.

  6. The Deco-Mart ` ı model w + excitation coeff. between neu- rons of the same population w − excitation coeff. between neu- rons of different populations w I inhibition coeff. between all neu- ronal populations Synaptic force between population i and j :  w + − w I i = j  w ij = ⇒ w 11 = w 22 , w 12 = w 21 w − − w I i � = j  ⊲ Unbiased : λ 2 = λ 1 ⊲ Biased : λ 2 = λ 1 + 0 . 1 [DM] G.Deco, D.Marti, Biological Cybernetics (2007)

  7. The associated stochastic system ⊲ ν 1 = ν 1 ( t ) , ν 2 = ν 2 ( t ) firing rates of the 2 sub-populations: ⊲ ξ = ξ ( t ) white noise of amplitude β (brownian motion with variance β 2 / 2).  � � λ 1 + � τ ˙ ν 1 = − ν 1 + φ + ξ j =1 , 2 w 1 j ν j  � � λ 2 + � τ ˙ ν 2 = − ν 2 + φ + ξ j =1 , 2 w 2 j ν j  where φ ( x ) is the sigmoide (response fct.), strictly monotone and bounded: ν c φ ( x ) = α, ν c ∈ R 1 + exp( − α ( x/ν c − 1)) ,

  8. The Fokker-Planck equation Let dx t = f ( x t ) dt + g ( x t ) dB t a ods syst. and L = � f i ( x ) ∂ x i + (1 / 2) � d ij ∂ x i j the generator of T , then u ( x, t ) = T t ϕ ( x ) satisfies ∂ t u = Lu . def = R 2 ⊲ f ( t, ν 1 , ν 2 ) probability distribution, t ≥ 0 and ν = ( ν 1 , ν 2 ) ∈ Ω + ⊲ ∂ t f + ∇ · ( F f ) − β 2 2 ∆ f = 0 ( FP ) Ff = ( − ν + Φ(Λ + W · ν )) f � � Ff − β 2 2 ∇ f · n = 0 ⊲ flux incoming F · n ≤ 0 ( H 1) � ⊲ normalization Ω f dν = 1 ( H 2)

  9. No explicit equilibrium solution Remark : The flux F is not the gradient of a potential A : ∂ ν 2 F 1 � = ∂ ν 1 F 2 ⊲ No explicit solution of the stationnary problem associated to ( FP ). ⊲ If one proves the existence, uniqueness and positivity of a solution f ∞ of the stationnary problem, then it is possible to split F in the sum of a gradient and non-gradient terms: let A = − log f ∞ (ie. f ∞ = e − A ),   � � � � Fe − A − β 2 F + β 2   2 ∇ ( e − A ) e − A   ∇ · = 0 , hence ∇ · 2 ∇ A = 0       � �� � G F = − β 2 and so: 2 ∇ A + G Remark : G is s.t. ∇· ( Ge − A ) = 0, but we do not have an explicit form for G [ACJ] A. Arnold, E. Carlen, Q. Ju, Communication in Stochastic Analysis (2008)

  10. Stationnary problem We first consider the stationnary problem associated to ( FP ) � � A f = − β 2 Ff − β 2 2 ∆ f + ∇ · ( Ff ) = 0 , 2 ∇ f · n = 0 ( S ) Theorem: If ( H 1) and ( H 2) hold, then there exists an unique positive solution f ∞ ( ν ) to ( S ) . Proof: Based on the Krein-Rutman theorem : • T : L 2 (Ω) → L 2 (Ω), s.t. ∀ g ∈ L 2 (Ω), Tg = f , with f the unique solution of : ( Ff − β 2 A f + ρf = g in Ω , 2 ∇ f ) · n = 0 on ∂ Ω • T : H 2 → H 2 is a compact operator, and T : K → K str. pos., with K = W 2 , 2 + (Ω). • KR th. = ⇒ r ( T ) > 0 and ∃ g > 0 s.t. Tg = r ( T ) g. We have, 1 A f + ρf = λf, f = r ( T ) g > 0 , λ = and r ( T ) � A f = ( λ − ρ ) f ⇒ ( λ − ρ ) ⇒ ρ = λ ⇒ A f = 0 . f dx = 0 � Ω

  11. Time dependent problem We consider here the parabolic problem: � � Ff − β 2 ∂ t f + A f = 0 , 2 ∇ f · n = 0 ( P ) with the initial condition: f 0 ( · ) ∈ L 2 (Ω) Theorem: ( P ) admits an unique solution f ( t, ν 1 , ν 2 ) . Proof: Let a ( t, f, g ) be the bi-linear form associated to A : � � β 2 ∀ f, g ∈ H 1 (Ω) , a ( t, f, g ) = 2 ∇ f · ∇ g dν − fF · ∇ g dν , ( a ) Ω Ω • a ( t, f, g ) is continuous, • a ( t, f, g ) + ρ < f, g > is coercive for ρ ∈ R large enough. � Remark : The maximum principle does not apply ! ( F has negative divergence ∇ · F ≤ 0)

  12. Generalized relative entropy Theorem: Let f 1 , f 2 > 0 solutions to ( P ) , and g > 0 a solution of the dual problem:  ∂ t g = − F · ∇ g − β 2 in Ω × [0 , T ] ,  2 ∆ g, ∂g ∂n = 0 on ∂ Ω  Then, ∀ H convex � � 2 = − β 2 � � d Ω gf 1 H ( f 2 Ω gf 1 H ′′ ( f 2 � ∇ ( f 2 � � � � ≤ 0 , dν ) ) dν ( GRE ) � � dt f 1 2 f 1 f 1 � � �� � � �� � H g ( f 2 | f 1 ) D g ( f 2 | f 1 ) � � f 1 �� ∂t [ gf 1 H ] = −∇ · [ Fgf 1 H ] + β 2 2 gf 1 H ′′ |∇ ( f 2 /f 1 ) | 2 − β 2 g 2 ∇ ∂ 2 ∇ · Proof: g H � � �� � =0 integr. by part � � Lemme: The solution f to ( P ) satisfies: Ω f ( t, ν ) dν = Ω f 0 ( ν ) dν. Proof: Integration of d/dt � Ω fg � [MMP] P. Michel, S.Mischler, B.Perthame, J.Math. Pures Appl. (2005).

  13. Corollaries Corollary 1: If f 0 ( ν ) > 0 , then f ( t, ν ) > 0 ∀ t . Proof: We choose in ( GRE ): g = 1, f 1 = f ∞ , f 2 solution of ( P ) with f 2 (0 , ν ) > 0, and H ( f 2 /f 1 ) = ε ( f 2 /f 1 ) − . Then: � d f ∞ ( f 2 /f 1 ) − dν ≤ 0 . dt Ω � �� � h ( t ) h (0) = 0, h ( t ) is decreasing and h ( t ) is positive ⇒ h ( t ) = 0 ∀ t � Corollary 2: If ( H 1) holds and f is a solution to ( P ) with initial con- dition f 0 , then � Ω | f ( t, ν ) − f ∞ ( ν ) | 2 dν = 0 lim t →∞ Proof: We choose in ( GRE ): g = 1, f 1 = f ∞ , f 2 = f and H ( s ) = s 2 / 2; and applying the Aubin-Lions theorem �

  14. Numerical approximation - finite difference method Let f k ( i, j ) = f ( k ∆ t, n i , n j ) with n i = ( i + 1 2 )∆ N 1 , i = 0 ...N 1 − 1 and n j = ( j + 1 2 )∆ N 2 , j = 0 ...N 2 − 1. Then, the Fokker-Planck equation is discretised by : f k +1 ( i, j ) f k ( i, j ) = � � F k ( i + 1 / 2 , j ) − F k ( i − 1 / 2 , j ) + ∆ t / ∆ N 1 � � G k ( i, j + 1 / 2) − G k ( i, j − 1 / 2) + ∆ t / ∆ N 2 , where F k ( i + 1 2 , j ), G k ( i, j + 1 2 ) are the flux at the interfaces : � � F k ( i + 1 / 2 , j ) f k ( i + 1 / 2 , j ) = − n i +1 / 2 + Φ( λ + w 11 n i +1 / 2 + w 12 n j ) β 2 � � f k ( i + 1 , j ) − f k ( i, j ) − , 2∆ N 1 � � G k ( i, j + 1 / 2) f k ( i, j + 1 / 2) = − n j +1 / 2 + Φ( λ + w 21 n i + w 22 n j +1 / 2 ) β 2 � � f k ( i, j + 1) − f k ( i, j ) − . 2∆ N 2 and we choose linear interpolation for f at the interfaces: f k ( i + 1 / 2 , j ) = f k ( i + 1 , j ) + f k ( i, j ) f k ( i, j + 1 / 2) = f k ( i, j + 1) + f k ( i, j ) , . 2 2 Remark : Adaptatif ∆ t (gain factor 100) ⇒ for i, j s.t. f k ( i, j ) � = 0 and F k ( i, j ) � = 0: f k ( i, j ) ∆ t = min 2 |F k ( i, j ) | i,j

  15. Computed quantities Marginales of f ( t, ν 1 , ν 2 ) with respect to ν 2 and ν 1 : � ν M � ν M N 1 ( t, ν 1 ) = f ( t, ν 1 , ν 2 ) dν 2 , N 2 ( t, ν 2 ) = f ( t, ν 1 , ν 2 ) dν 1 . 0 0 First order moments: � � µ i ( t ) = Ω ν i f ( ν 1 , ν 2 , t ) dν 1 dν 2 , i = 1 , 2 Second order moments: � � γ ij ( t ) = Ω ν i ν j f ( ν 1 , ν 2 , t ) dν 1 dν 2 , i, j = 1 , 2 . Probabilities ρ i ( t ) to belong to the domains Ω i , i = 1 , 2 , 3 : � � ρ i ( t ) = f ( ν 1 , ν 2 , t ) dν 1 dν 2 . Ω i We have N 1 = N 2 = 200 discretisation points, and stop computations when we get a 10 − 10 difference between to successive iterations. β = 0 . 1, α = 4, ν c = 20, λ 1 = 15, r = 0 . 3, w + = 2 . 35, w I = 1 . 9, τ = 10 − 2 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend