technische universit at wien entropy method for
play

TECHNISCHE UNIVERSIT AT WIEN Entropy method for hypocoercive - PowerPoint PPT Presentation

TECHNISCHE UNIVERSIT AT WIEN Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift Anton ARNOLD with Jan Erb Capri, September 2015 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth.


  1. TECHNISCHE UNIVERSIT¨ AT WIEN Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift Anton ARNOLD with Jan Erb Capri, September 2015 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 1 / 33

  2. degenerate Fokker-Planck equations with linear drift evolution of probability density f ( x , t ) , x ∈ R n , t > 0: � � f t = div D ∇ f + C x f (1) f ( x , 0) = f 0 ( x ) D ∈ R n × n ... symmetric, const in x , degenerate C ∈ R n × n ... const in x Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 2 / 33

  3. degenerate Fokker-Planck equations with linear drift evolution of probability density f ( x , t ) , x ∈ R n , t > 0: � � f t = div D ∇ f + C x f (1) f ( x , 0) = f 0 ( x ) D ∈ R n × n ... symmetric, const in x , degenerate C ∈ R n × n ... const in x goals: existence & uniqueness of steady state f ∞ ( x ); convergence f ( t ) t →∞ − → f ∞ with sharp rates; complete theory for the equation class (1) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 2 / 33

  4. hypocoercive example – from plasma physics kinetic Fokker-Planck equation for f ( x , v , t ) , x , v ∈ R n : f t + v · ∇ x f − ∇ x V · ∇ v f = σ ∆ v f + ν div v ( vf ) � �� � � �� � � �� � � �� � free transport influence of potential V ( x ) diffusion, σ> 0 friction, ν> 0 � � | v | 2 − ν 2 + V ( x ) steady state : f ∞ ( x , v ) = c e σ V ( x )... given confinement potential Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 3 / 33

  5. hypocoercive example – from plasma physics kinetic Fokker-Planck equation for f ( x , v , t ) , x , v ∈ R n : f t + v · ∇ x f − ∇ x V · ∇ v f = σ ∆ v f + ν div v ( vf ) � �� � � �� � � �� � � �� � free transport influence of potential V ( x ) diffusion, σ> 0 friction, ν> 0 � � | v | 2 − ν 2 + V ( x ) steady state : f ∞ ( x , v ) = c e σ V ( x )... given confinement potential rewritten (with x , v variables): � � 0 � � � � 0 − v f t = div x , v ∇ x , v f + f 0 σ I ∇ x V + ν v � �� � � �� � =: D ... diffusion drift Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 3 / 33

  6. Outline: 1 hypocoercivity, prototypic examples 2 review of standard entropy method for non-degenerate Fokker-Planck equations 3 decay of modified “entropy dissipation” functional 4 mechanism of new method Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 4 / 33

  7. (hypo)coercivity 1 example 1: standard Fokker-Planck equation on R n : � � =: Lf . . . symmetric on H := L 2 ( f − 1 f t = div ∇ f + x f ∞ ) c e − | x | 2 2 , f ∞ ( x ) = ker L = span( f ∞ ) • L is dissipative, i.e. � Lf , f � H ≤ 0 ∀ f ∈ D ( L ) • − L is coercive (has a spectral gap), in the sense: �− Lf , f � H ≥ � f � 2 ∀ f ∈ { f ∞ } ⊥ L 2 ( f − 1 ∞ ) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 5 / 33

  8. (hypo)coercivity 2 example 2: � � f t = div D ∇ f + C x f =: Lf (2) with degenerate D is degenerate parabolic; (symmetric part of) − L is not coercive. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 6 / 33

  9. (hypo)coercivity 2 example 2: � � f t = div D ∇ f + C x f =: Lf (2) with degenerate D is degenerate parabolic; (symmetric part of) − L is not coercive. Definition 1 (Villani 2009) → K ⊥ (densely) Consider L on Hilbert space H with K = ker L ; let ˜ H ֒ (e.g. H ... weighted L 2 , ˜ H ... weighted H 1 ). − L is called hypocoercive on ˜ H if ∃ λ > 0 , c ≥ 1: ∀ f ∈ ˜ � e Lt f � ˜ H ≤ c e − λ t � f � ˜ H H • typically c > 1 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 6 / 33

  10. Steady state of (non)degenerate FP equations: standard Fokker-Planck equation f t = div( ∇ f + x f ) : unique steady state f ∞ ( x ) = c e −| x | 2 / 2 as a balance of drift & diffusion; sharp decay rate = 1 n = 2: x 2 drift x 1 diffusion Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 7 / 33

  11. degenerate prototype: degenerate diffusion (1D Fokker-Planck) + rotation � � 1 � x 1 − ω x 2 � � 0 � f t = div ∇ f + f 0 0 ω x 1 � �� � � �� � = D = C x f ∞ ( x ) = c e −| x | 2 / 2 ∀ ω ∈ R (unique for ω � = 0); sharp decay rate = 1 2 (= min ℜ λ C ) for fast enough rotation ( | ω | > 1 2 ) x 2 x 1 equilibration by drift/diffusion Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 8 / 33

  12. degenerate prototype: degenerate diffusion (1D Fokker-Planck) + rotation � � 1 � x 1 − ω x 2 � � 0 � f t = div ∇ f + f 0 0 ω x 1 � �� � � �� � = D = C x f ∞ ( x ) = c e −| x | 2 / 2 ∀ ω ∈ R (unique for ω � = 0); sharp decay rate = 1 2 (= min ℜ λ C ) for fast enough rotation ( | ω | > 1 2 ) x 2 x 1 equilibration by drift/diffusion | ω | = 1 2 : C has a Jordan block ⇒ (sharp) decay rate = 1 2 − ε Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 8 / 33

  13. degenerate prototype (2): � � 1 � 1 � � � 0 − 1 f t = div ∇ f + x f 0 0 1 0 x 2 -axis: drift characteristics of ˙ x = − C x tangent to level curve of | x | : x ’ = − x + y Drift characteristic Level curve of P−norm y ’ = − x 3 2 1 0 y −1 −2 −3 −4 −3 −2 −1 0 1 2 3 4 x � � √ 2 − 1 level curve of “distorted” vector norm x · P · x ; P = − 1 2 Ref: [Dolbeault-Mouhot-Schmeiser] 2015 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 9 / 33

  14. coefficients C , D in Fokker-Planck equation � � f t = div D ∇ f + C x f =: Lf Condition A: No (nontrivial) subspace of ker D is invariant under C ⊤ . (equivalent: L is hypoelliptic.) Proposition 1 Let Condition A hold. f ∈ C ∞ ( R n × R + ) . a) Let f 0 ∈ L 1 ( R d ) ⇒ [H¨ ormander 1969] b) Let f 0 ∈ L 1 + ( R d ) ⇒ f ( x , t ) > 0 , ∀ t > 0 . (Green’s fct > 0 ) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 10 / 33

  15. coefficients C , D in Fokker-Planck equation � � f t = div D ∇ f + C x f =: Lf Condition A: No (nontrivial) subspace of ker D is invariant under C ⊤ . (equivalent: L is hypoelliptic.) Proposition 1 Let Condition A hold. f ∈ C ∞ ( R n × R + ) . a) Let f 0 ∈ L 1 ( R d ) ⇒ [H¨ ormander 1969] b) Let f 0 ∈ L 1 + ( R d ) ⇒ f ( x , t ) > 0 , ∀ t > 0 . (Green’s fct > 0 ) Condition B: Condition A + let C be positively stable (i.e. ℜ λ C > 0) → ∃ confinement potential; drift towards x = 0. • hypoelliptic + confinement = hypocoercive (for FP eq.) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 10 / 33

  16. steady state � � f t = div D ∇ f + C x f (3) Theorem 2 (3) has a unique (normalized) steady state f ∞ ∈ L 1 ( R n ) iff Condition B holds. f ∞ ( x ) = c K e − x ⊤ K − 1 x Then: . . . non-isotropic Gaussian 2 0 < K ∈ R n × n 2 D = CK + KC ⊤ . . . unique solution of (continuous Lyapunov equation) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 11 / 33

  17. normalization of Fokker-Planck equations with f ∞ ( x ) = c K e − x ⊤ K − 1 x � � f t = div D ∇ f + C x f 2 transformations: √ − 1 x ⇒ 1 y := K � ˜ with g ∞ ( x ) = c e − | y | 2 � D ∇ y g + ˜ 2 , g t = div y C y g ˜ ˜ D = C S Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 12 / 33

  18. normalization of Fokker-Planck equations with f ∞ ( x ) = c K e − x ⊤ K − 1 x � � f t = div D ∇ f + C x f 2 transformations: √ − 1 x ⇒ 1 y := K � ˜ with g ∞ ( x ) = c e − | y | 2 � D ∇ y g + ˜ 2 , g t = div y C y g ˜ ˜ D = C S ˇ 2 rotation of y ⇒ D = diag( d 1 , ..., d k , 0 , ..., 0 ) � �� � n − k [normalization from now on assumed] Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 12 / 33

  19. review of entropy method: linear symmetric Fokker-Planck equations evolution of probability density f ( x , t ) , x ∈ R n , t > 0: � � f t = div D ( x ) · [ ∇ f + f ∇ A ( x )] =: Lf � f 0 ∈ L 1 + ( R n ) , f ( x , 0) = f 0 ( x ); R n f 0 dx = 1 ⇒ f ( x , t ) ≥ 0 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 13 / 33

  20. review of entropy method: linear symmetric Fokker-Planck equations evolution of probability density f ( x , t ) , x ∈ R n , t > 0: � � f t = div D ( x ) · [ ∇ f + f ∇ A ( x )] =: Lf � f 0 ∈ L 1 + ( R n ) , f ( x , 0) = f 0 ( x ); R n f 0 dx = 1 ⇒ f ( x , t ) ≥ 0 e − A ( x ) . . . (unique) normalized steady state f ∞ ( x ) = � f ∞ D ( x ) ∇ f � ... symmetric in L 2 ( R n , f − 1 Lf = div ∞ ) f ∞ positive definite matrix ∀ x ∈ R n D ( x ) > 0 ... A ( x ) ... scalar confinement potential, i.e. A ( x ) → ∞ as | x | → ∞ ; idea : A ( x ) � c | x | 2 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 13 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend