renewal processes
play

Renewal Processes Bo Friis Nielsen 1 1 DTU Informatics 02407 - PowerPoint PPT Presentation

Renewal Processes Bo Friis Nielsen 1 1 DTU Informatics 02407 Stochastic Processes 8, October 27 2020 Bo Friis Nielsen Renewal Processes Renewal Processes Today: Renewal phenomena Next week Markov Decision Processes Three weeks from


  1. Renewal Processes Bo Friis Nielsen 1 1 DTU Informatics 02407 Stochastic Processes 8, October 27 2020 Bo Friis Nielsen Renewal Processes

  2. Renewal Processes Today: ◮ Renewal phenomena Next week ◮ Markov Decision Processes Three weeks from now ◮ Brownian Motion Bo Friis Nielsen Renewal Processes

  3. A Poisson proces Sequence X i , where X i ∼ exp( λ i ) or X i ∼ PH (( 1 ) , [ − λ ]) . W n = � n i = 1 X i �� � N ( t ) = max n ≥ 0 { W n ≤ t } = max X i ≤ t n ≥ 0 i = n Let us consider a sequence, where X i ∼ PH ( α , S ) . Bo Friis Nielsen Renewal Processes

  4. Underlying Markov Jump Process Let J i ( t ) be the (absorbing) Markov Jump Process related to X i . Define J ( t ) = J i ( t − � N ( t ) j = 1 τ i ) P ( J ( t + ∆) = j | J ( t ) = i ) = S ij + s i α j Such that A = S + s α is the generator for the continued phase proces - J ( t ) Note the similarity with the expression for a sum of two phase-type distributed variables Bo Friis Nielsen Renewal Processes

  5. Distribution of N ( t ) For X i ∼ exp( λ ) P ( N ( t ) = n ) = ( λ t ) n n ! e − λ t What if X i ∼ PH ( α , S ) Generator up to finite n  . . .  S s α 0 0 0 0 0 S s α 0 . . . 0 0     0 0 S s α . . . 0 0     0 0 0 S . . . 0 0 A n =    . .. .. . .. .. .. . .. . .. .. ... ... ... . .. .. .. . ..  . . . . . . . . . . . . . . . . . .   . . . . . .     0 0 0 0 . . . S s α   0 0 0 0 . . . 0 S A quasi-birth process - to calculate P ( N ( t ) = n ) we would need the matrix-exponential of an ( n + 1 ) p dimensional square matrix P ( N ( t ) > n ) = P ( W n ≤ t ) , W n is an “Erlang-type” PH variable Bo Friis Nielsen Renewal Processes

  6. Renewal function X i ∼ exp( λ ) then M ( t ) = E ( N ( t )) = λ t Probability of having a point in [ t ; t + d t ( P ( ∃ n : W n ∈ [ t ; t + d t () The probability of a point is the probability that J ( t ) has an instantaneous visit to an absorbing state ( J ( t ) shifts from some J n () to J n + 1 P ( N ( t + d t ) − N ( t ) = 1 | J ( t ) = i ) = s i d t + o ( d t ) α e A t 1 i P ( J ( t ) = i ) = α e A t s d t + o ( d t ) P ( N ( t + d t ) − N ( t ) = 1 ) = � t � t α e A u s d u = α e A u d u s M ( t ) = E ( N ( t ) = 0 0 The generator A is singular ( A 1 = 0 , π A = 0 ) Bo Friis Nielsen Renewal Processes

  7. � t 0 e A u d u Calculation of First we note that 1 π − A is non-singular � t � t ( 1 π − A ) − 1 ( 1 π − A ) e A u d u e A u d u = 0 0 �� t � t � ( 1 π − A ) − 1 1 π e A u d u − A e A u d u = 0 0 � t � t � t ∞ ∞ ( A u ) n π ( A u ) n � � 1 π e A u d u = 1 π d u = 1 d u n ! n ! 0 0 0 n = 0 n = 0 � t = 1 π d u = t 1 π 0 � t e A t − I A e A u d u = 0 Bo Friis Nielsen Renewal Processes

  8. Back to M ( t ) We have ( 1 π − A ) 1 = 1 and π ( 1 π − A ) = π , so α ( 1 π − A ) − 1 � � e A t − I �� M ( t ) = t 1 π − s π s t + α ( 1 π − A ) − 1 s − α ( 1 π − A ) − 1 e A t s = We have α ( 1 π − A ) − 1 e A t s → α ( 1 π − A ) − 1 1 π s = π s Bo Friis Nielsen Renewal Processes

  9. Renewal Processes F ( x ) = P { X ≤ x } W n = X 1 + · · · + X n N ( t ) = max { n : W n ≤ t } E ( N ( t )) = M ( t ) Renewal function Bo Friis Nielsen Renewal Processes

  10. Age, Residual Life, and Total Life (Spread) γ t = W N ( t )+ 1 − t ( excess or residual life time ) δ t = t − W N ( t ) ( current life or age ) β t = δ t + γ t ( total life or spread Bo Friis Nielsen Renewal Processes

  11. Topics in renewal theory Elementary renewal theorem M ( t ) → 1 t µ � � W N ( t )+ 1 = µ ( 1 + M ( t )) E � t M ( t ) = � ∞ n = 1 F n ( t ) , F n ( t ) = 0 F n − 1 ( t − x ) d F ( t ) � t Renewal equation A ( t ) = a ( t ) + 0 A ( t − u ) d F ( u ) Solution to renewal equation � t � ∞ 0 a ( t − u ) d M ( u ) → 1 A ( t ) = 0 a ( t ) d t µ Limiting distribution of residual life time � x lim t →∞ P { γ t ≤ x } = 1 0 ( 1 − F ( u )) d u µ Limiting distribution of joint distribution of age and residual life � ∞ time lim t →∞ P { γ t ≥ x , δ t ≥ y } = 1 x + y ( 1 − F ( z )) d z µ Limitng distribution of total life time (spread) � x 0 t d F ( t ) lim t →∞ P { β t ≤ x } = µ Bo Friis Nielsen Renewal Processes

  12. Continuous Renewal Theory (7.6) P { W n ≤ x } = F n ( x ) with � x F n ( x ) = F n − 1 ( x − y ) d F ( y ) 0 The expression for F n ( x ) is generally quite complicated Renewal equation � x v ( x ) = a ( x ) + v ( x − u ) d F ( u ) 0 � x v ( x ) = a ( x − u ) d M ( u ) 0 Bo Friis Nielsen Renewal Processes

  13. Expression for M ( t ) P { N ( t ) ≥ k } = P { W k ≤ t } = F k ( t ) P { N ( t ) = k } = P { W k ≤ t , W k + 1 > t } = F k ( t ) − F k + 1 ( t ) ∞ � M ( t ) = E ( N ( t )) = k P { N ( t ) = k } k = 1 ∞ ∞ � � = P { N ( t ) > k } = P { N ( t ) ≥ k } k = 0 k = 1 ∞ � = F k ( t ) k = 1 Bo Friis Nielsen Renewal Processes

  14. E [ W N ( t )+ 1 ]     N ( t )+ 1 N ( t )+ 1 �  = E [ X 1 ] + E � E [ W N ( t )+ 1 ] = E X j X j    j = 1 j = 1 ∞ � � � = µ + E X j 1 ( X 1 + · · · + X j − 1 ≤ t ) j = 2 X j and 1 ( X 1 + · · · + X j − 1 ≤ t ) are independent ∞ ∞ � � � � � � = µ + E X j E 1 ( X 1 + · · · + X j − 1 ≤ t ) = µ + µ F j − 1 ( t ) j = 2 j = 2 E [ W N ( t )+ 1 ] = exp[ X 1 ] E [ N ( t ) + 1 ] = µ ( M ( t ) + 1 ) Bo Friis Nielsen Renewal Processes

  15. Poisson Process as a Renewal Process n ∞ ( λ x ) n ( λ x ) n e − λ x = 1 − � � e − λ x F n ( x ) = n ! n ! i = n i = 0 M ( t ) = λ t Excess life, Current life, mean total life Bo Friis Nielsen Renewal Processes

  16. The Elementary Renewal Theorem M ( t ) E [ N ( t )] = 1 lim = lim t t µ t →∞ t →∞ The constant in the linear asymptote = σ 2 − µ 2 M ( t ) − µ � � lim 2 µ 2 t t →∞ Example with gamma distribution Page 367 Bo Friis Nielsen Renewal Processes

  17. Asymptotic Distribution of N ( t ) When E [ X k ] = µ and V ar [ X k ] = σ 2 both finite � x � � N ( t ) − t /µ 1 e − y 2 / 2 d y lim t σ 2 /µ 3 ≤ x = √ t →∞ P � 2 π −∞ Bo Friis Nielsen Renewal Processes

  18. Limiting Distribution of Age and Excess Life � x t →∞ P { γ t ≤ x } = 1 lim ( 1 − F ( y )) d y = H ( x ) µ 0 � ∞ P { γ t > x , δ t > y } = 1 ( 1 − F ( z )) d z µ x + y Bo Friis Nielsen Renewal Processes

  19. Size biased distributions f i ( t ) = t i f ( t ) � X i � E The limiting distribution og β ( t ) Bo Friis Nielsen Renewal Processes

  20. Delayed Renewal Process Distribution of X 1 different Bo Friis Nielsen Renewal Processes

  21. Stationary Renewal Process Delayed renewal distribution where P { X 1 ≤ x } = G s ( x ) = µ − 1 � x 0 ( 1 − F ( y )) d y t M S ( t ) = µ Prob { γ t ≤ x } = G s ( x ) Bo Friis Nielsen Renewal Processes

  22. Additional Reading S. Karlin, H. M. Taylor: “A First Course in Stochastic Processes” Chapter 5 pp.167-228 William Feller: “An introduction to probability theory and its applications. Vol. II.” Chapter XI pp. 346-371 Ronald W. Wolff: “Stochastic Modeling and the Theory of Queues” Chapter 2 52-130 D. R. Cox: “Renewal Processes” Søren Asmussen: “Applied Probability and Queues” Chapter V pp.138-168 Darryl Daley and Vere-Jones: “An Introduction to the Theory of Point Processes” Chapter 4 pp. 66-110 Bo Friis Nielsen Renewal Processes

  23. Discrete Renewal Theory (7.6) P { X = k } = p k n � M ( n ) = p k [ 1 + M ( n − k )] k = 0 n � = F ( n ) + p k M ( n − k ) k = 0 A renewal equation. In general n � v n = b n + p k v n − k k = 0 The solution is unique, which we can see by solving recursively b 0 v 0 = 1 − p 0 b 1 + p 1 v 0 v 1 = 1 − p 0 Bo Friis Nielsen Renewal Processes

  24. Discrete Renewal Theory (7.6) (cont.) Let u n be the renewal density ( p 0 = 0) i.e. the probability of having an event at time n n � u n = δ n + p k u n − k k = 0 Lemma 7.1 Page 381 If { v n } satisifies v n = b n + � n k = 0 p k v n − k and u n satisfies u n = δ n + � n k = 0 p k u n − k then n � v n = b n − k u k k = 0 � Bo Friis Nielsen Renewal Processes

  25. The Discrete Renewal Theorem Theorem 7.1 Page 383 Suppose that 0 < p 1 < 1 and that { u n } and { v n } are the solutions to the renewal equations v n = b n + � n k = 0 p k v n − k and u n = δ n + � n k = 0 p k u n − k , respectively. Then 1 (a) lim n →∞ u n = � ∞ k = 0 kp k � ∞ k = 0 b k (b) if � ∞ k = 0 | b k | < ∞ then lim n →∞ v n = � ∞ k = 0 kp k � Bo Friis Nielsen Renewal Processes

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend