stationary tries and renewal theorem
play

Stationary Tries and Renewal Theorem Philippe Robert - PowerPoint PPT Presentation

Stationary Tries and Renewal Theorem Philippe Robert INRIA-Rocquencourt Contents 1 Renewal Theorems 2 2 Tree Algorithms 10 3 A Probabilistic Point of View 19 4 Stationary tries 35 1. Renewal Theorems Some History Blackwell (1948):


  1. Stationary Tries and Renewal Theorem Philippe Robert INRIA-Rocquencourt

  2. Contents 1 Renewal Theorems 2 2 Tree Algorithms 10 3 A Probabilistic Point of View 19 4 Stationary tries 35

  3. 1. Renewal Theorems

  4. Some History Blackwell (1948): — A light bulb last two years in average. — How many are necessary for ten years ? L1 L2 L3 t 0 Breiman, Feller, Lindvall, . . . Babillot (Habilitation).

  5. General Framework L 1 L 2 L 3 L 4 L 5 t 0 R t F t ( L i ) i.i.d. non-negative random variables. — U ( a, b ) : average number of points in [ a, b ] , U : Renewal measure, for h > 0 t → + ∞ U ( t, t + h )? lim — Behavior of ( R t , F t ) as t → + ∞ ?

  6. Renewal Theorem Non-Lattice Case: ∀ δ > 0 , P ( L ∈ δ N ) < 1 h t → + ∞ U ( t, t + h ) = lim E ( L 1 ); dist. ( R t , F t ) → ( R ∞ , F ∞ ) : Z L 1 ! 1 E ( f ( R ∞ , F ∞ ))= E ( L 1 ) E f ( u, L 1 − u ) du 0 F t has density ∼ x → P ( L 1 ≥ x ) / E ( L 1 )

  7. Proofs — Renewal Equation: Z t U (0 , t ) = 1 + U (0 , t − u ) L ( du ) 0 ⇒ Fourier Analysis (Feller). — Coupling: Lindvall, Athreya and Ney, . . .

  8. A Point Process Point of View L n−1 L L n+1 n t t t t t t t τ τ τ τ τ τ −3 −2 −1 0 1 2 Renewal Theorem: dist. ( τ t → ( L ∗ i , i ∈ Z ) − i , i ∈ Z ) Stationary renewal process. 1. ( L ∗ i , i ≤ − 1) , ( L ∗ i , i > 1) , i.i.d. dist. as L 1 ; dist. 2. ( L ∗ 0 , L ∗ 1 ) = ( R ∞ , F ∞ ) .

  9. Lattice Case If P ( L 1 ∈ δ N ) = 1 and P ( L 1 = δ ) > 0 : — ( τ t i , i ∈ Z )) does not converge as t → + ∞ — for h > 0 , n → + ∞ ( τ h + nδ ( L ∗ h , i ∈ Z )) − → i , i ∈ Z ) i — Periodic Behavior dist. ( L ∗ h = ( L ∗ ( h + δ ) i , i ∈ Z ) , i ∈ Z ) i

  10. The Poisson Process ( L n ) exponential r.v. with parameter 1 . P ( L 1 ≥ x ) = exp( − x ) . L n−1 L L n+1 n t E E E E E E −3 −2 −1 0 1 2 ( E n ) also exp. with parameter 1 . Invariant by translation. Renewal Theorem holds at time t = 0 .

  11. 2. Tree Algorithms

  12. XYZTU — Each item of root node flips a coin X X = 0 ⇒ left node X = 1 ⇒ right node

  13. XYZTU XZT YU 1 0 Each item of root node flips a coin 0 ⇒ left node 1 ⇒ right node Continue until at most one item per node. Independent coin tossings.

  14. A Non-Symmetrical Tree Algorithm XYZTU p q XZT YU q p p q YU X ZT * p q q p T Z Y U P ( X = 0) = p, P ( X = 1) = q

  15. Applications — Communication protocols; — Search and Sort Algorithms; — Leader election problems; — Statistical tests, — . . .

  16. Asymptotic behavior Cost Function. Starting with n items at root R n : nb. of nodes of the tree E ( R n ) : Average cost to process 1 item. n E ( R n ) Law of Large Numbers: lim ? n n → + ∞ the limit does not always exist !

  17. Simulation n → E ( R n ) /n Simulation of n → R n /n × 106

  18. The sequence n → E ( R n ) /n 2.885393 2.885392 2.885391 2.885390 2.885389 2.885388 2.885387 5000 10000 20000 30000 40000 50000

  19. Asymptotic behavior 8 if log p converges log q �∈ Q > > „ E ( R n ) > « < : n > > > oscillates otherwise : Literature: Complex analysis methods FLajolet and co-authors.

  20. 3. A Probabilistic Point of View

  21. Recurrence Relation R 0 = R 1 = 1 . For n ≥ 2 , dist. R n = 1 + R X n + R n − X n with X n = B 1 + B 2 + · · · + B n . ( B i ) ∈ { 0 , 1 } i.i.d. Bernoulli parameter p . ( R n ) same dist. as ( R n ) independent of ( R n )

  22. Equation for the Poisson Transform dist. R n = 1 + R X n + R n − X n − 2 × 1 { n ≤ 1 } If ( N x , x ≥ 0) Poisson process with rate 1 E ( R N x ) = E ( R N px ) + E ( R N qx ) + 1 − 2 P ( t 2 ≥ x ) t 2 second point of Poisson process ( N x ) If r ( x ) = E ( R N x ) − 1 r ( x ) = r ( px ) + r ( qx ) + 2 P ( t 2 < x )

  23. Poisson Transform (II) r ( x ) = r ( px ) + r ( qx ) + 2 P ( t 2 < x ) If A 1 ∈ { p, q } r.v. such that P ( A 1 = p ) = p „ r ( A 1 x ) « ` ´ r ( x ) = E + 2 E 1 { t 2 <x } A 1

  24. Poisson Transform (II) r ( x ) = r ( px ) + r ( qx ) + 2 P ( t 2 < x ) If A 1 ∈ { p, q } r.v. such that P ( A 1 = p ) = p „ r ( A 1 x ) « ` ´ r ( x ) = E + 2 E 1 { t 2 <x } A 1 „ 1 „ r ( A 2 A 1 x ) « « = E +2 E 1 { t 2 <xA 1 } A 2 A 1 A 1 ` ´ +2 E 1 { t 2 <x } + ∞ ! 1 X = 2 1 { t 2 <x Q k E 1 A i } Q k 1 A i k =0

  25. Poisson Transform (III) + ∞ ! 1 X E ( R N x ) = 1 + 2 1 { t 2 <x Q k E Q k 1 A i } 1 A i k =0 + ∞ + ∞ ! 1 X X = 1 + 2 E 1 { t 2 <x Q k Q k 1 A i ,N x = n } 1 A i k =0 n =2

  26. Given { N x = n } the n points of Poisson proc.: n i.i.d. uniformly dist. r.v. on [0 , x ] U 2 ,n : second smallest value of n i.i.d. uniform r.v. on [0 , 1] t 2 ≤ x „ « A , N x = n P = P ( t 2 ≤ x/ A| N x = n ) x n n ! e − x P ( t 2 ≤ x/ A| N x = n ) = P ( U 2 ,n ≤ 1 / A )

  27. Probabilistic de-Poissonization E ( R n ) x n X n ! e − x E ( R N x ) = n ≥ 0 + ∞ + ∞ ! 1 X X = 1 + 2 1 { t 2 <x Q k E 1 A i ,N x = n } Q k 1 A i k =0 n =2 x n X n ! e − x E ( R N x ) = n ≥ 0 + ∞ + ∞ ! x n 1 X X n ! e − x +2 1 { U 2 ,n < Q k E Q k 1 A i } 1 A i n =2 k =0

  28. An Associated Random Walk U 2 ,n : 2 th min. of n ind. uniform r.v. on [0 , 1] 0 1 1 @X A , n ≥ 2 . E ( R n ) = 1+2 E 1 { U 2 ,n < Q k 1 A i } Q k 1 A i k ≥ 0 X E ( R n ) − 1 e − log n + P k i =1 − log( A i ) = E 2 n k 1 × 1 n o A − P k 1 log( A i ) ≤− log U 2 ,n

  29. The Use of Renewal Theorem L i = − log A i U 2 ,n ∼ 1 /n 0 1 e − ( log n − P k i =1 L i )1 n @X ∆ n = E o A P k 1 L i ≤ log n k 0 1 0 1 i = k τ log n e − P 0 e − P 0 i = k L ∗ @X @X A ∼ E ∆ n ∼ E i i A k ≤ 0 k ≤ 0 if L 0 non-lattice.

  30. Renewal Theorems — Dist. of − log A non-lattice: log p/ log q �∈ Q . Continuous Renewal Theorem. Convergence of E ( R n ) /n . — Dist. of − log A lattice: log p/ log q ∈ Q . Discrete Renewal Theorem. Periodic Fluctuations of E ( R n ) /n .

  31. General Splitting Scheme Algorithm A ( n ) — n < D ⇒ STOP. Otherwise: — Take a r.v. G ∈ N ; Branching variable — Take a random probability vector V = ( V 1 , . . . , V G ) , V 1 + · · · + V G = 1 ; Weights on arcs — Split n into G subgroups ( n 1 , . . . n G ) randomly, according to vector V . — Apply A ( n 1 ) , . . . , A ( n G ) .

  32. General Splitting Algorithms ABCDEF V V 1 3 V 2 ABC ABC DE F AB C * D E AB * AB *

  33. Splitting Measure Probability Measure on [0 , 1] : Z 1 G ! X f ( x ) W ( dx ) = E V i,G f ( V i,G ) . 0 i =1

  34. Theorem. [Mohamed and R. (2005)] If Z 1 | log( y ) | W ( dy ) < + ∞ , y 0 — if log W non-lattice, E ( G ) n → + ∞ E ( R n ) /n = lim . R 1 ( D − 1) 0 | log( y ) | W ( dy ) — log W lattice: E ( R n ) /n ∼ F (log n/λ ) Z + ∞ y D − 2 x − log y „  ff« ( D − 1)! e − y dy F ( x )= C exp − λ λ 0

  35. Some connections — Fragmentation processes; — Random Fractal subsets of [0 , 1] ; — Branching processes: Multiplicative martingales; — Dynamical systems: counting problems.

  36. 4. Stationary tries

  37. Stationary sequences — X = ( X k , k ∈ Z ) ∈ { 0 , 1 } Z a stationary sequence; — Each item draws a sequence dist. as X ; X i : “coin” (possibly) used at level i ; — R n size of the tree with n items. Asymptotic behavior of E ( R n ) /n ?

  38. X = 10 , Y = 010 , Z = 1110 , T = 1111 , U = 011 . XYZTU XZT YU YU X ZT * T Z Y U

  39. Functional Analysis Approach Context — A function φ [0 , 1] → [0 , 1] ; — A Partition [0 , 1] = ∪ i I i ; — X n = p if φ ( n ) ( X 0 ) ∈ I p . Methods — Ruelle’s Transfer Operator; — Functional Transforms. Baladi, Bourdon, Cl´ ement, Flajolet, Vall´ ee, . . .

  40. Cost Function X C n ( f ) = f ( np α ) α ∈ Σ ∗ Σ ∗ finite vectors in { 0 , 1 , . . . , C } p α proba. of vector α ∈ Σ ∗ ; f (0) = 0 . Exemple: Cl´ ement, Flajolet and Vall´ ee (2001) X 1 − (1 + np α )(1 − p α ) n ´ ` R n = α ∈ Σ ∗ Z np α ue − u du X ∼ 0 α ∈ Σ ∗

  41. Probabilistic rewriting of cost function X C n ( f ) = f ( np α ) α ∈ Σ ∗ f ( np α ) X X = p α p α α ∈ Σ ∗ k ≥ 1 | α | = k „ f ( np κ k ) « X = E p κ k k ≥ 1 κ k projection on k first coord.

  42. Rewriting of cost function: Fubini’s Theorem „ f ( np κ k ) « X C n ( f ) = E p κ k k ≥ 1 0 1 Z + ∞ 1 @X 1 { u ≤ np κk } f ′ ( u ) du = E A p κ k 0 k ≥ 1 Z + ∞ E ( G n ( u )) f ′ ( u ) du, = 0 with 1 X G n ( u ) = 1 { u ≤ np κk } . p κ k k ≥ 1

  43. A rough estimation Shannon’s Theorem: − log p κ k ∼ kH , a.s. H entropy. 1 X G n ( u ) = 1 { u ≤ np κk } p κ k k ≥ 1 e − log p κk 1 {− log p κk ≤ log( n/u ) } X = k ≥ 1 ′′ ∼ ′′ X e kH 1 { k ≤ log( n/u ) /H } k ≥ 1 = e ⌈ log( n/u ) /H ⌉ H − 1 n ∼ u ( e H − 1) . e H − 1 G n of order n .

  44. More Rigor p κ n ( ω ) = P ( X n = ω n , . . . , X 0 = ω 0 | X k = w k , k < 0) n Y = P ( X i = ω i | X i = ω i , . . . , X 0 = ω 0 , X k = ω k , k < 0) i =1 n h ◦ θ i ( ω ) X − log p κ n = i =1 θ : shift on sequences; h ( ω ) = − log P ( X 0 = ω 0 | X k = ω k , k < 0) . h entropy function, H = E ( h )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend