small noise asymptotics of integrated ornstein uhlenbeck
play

Small noise asymptotics of integrated OrnsteinUhlenbeck processes - PowerPoint PPT Presentation

Small noise asymptotics of integrated OrnsteinUhlenbeck processes driven by -stable Lvy processes Robert Hintze and Ilya Pavlyukevich FriedrichSchillerUniversitt Jena Fifth Workshop on Random Dynamical Systems Bielefeld,


  1. Small noise asymptotics of integrated Ornstein–Uhlenbeck processes driven by α -stable Lévy processes Robert Hintze and Ilya Pavlyukevich Friedrich–Schiller–Universität Jena Fifth Workshop on Random Dynamical Systems Bielefeld, 3–5.10.2012 – Typeset by Foil T EX –

  2. C ONTINUOUS L ÉVY F LIGHTS 1 1. Source of randomness: Lévy process L L is a Lévy process if L 0 ✏ 0 , is stochastically continuous and has independent stationary increments (and right continuous paths with left limits). L ✏ Brownian motion � drift ❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥ � jumps ❧♦♦♠♦♦♥ ① x, y ② ✏ ➦ m Lévy–Khintchine formula for L P R m : i ✏ 1 x i y i e i ① λ,y ② ✁ 1 ✁ i ① λ, y ② ✁ t ➺ ✁ E e i ① L t ,λ ② ✏ exp ✑ ✠ ✙ 2 ① Aλ, λ ② � i t ① λ, µ ② � t ν ♣ dy q 1 � ⑥ y ⑥ 2 ❧♦♦♦♦♦♠♦♦♦♦♦♥ ❧♦♦♠♦♦♥ ❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥ Brownian motion drift jumps – Typeset by Foil T EX – 1

  3. C ONTINUOUS L ÉVY F LIGHTS 2 2. α -stable Lévy–Processes (Lévy Flights) L ✏ ♣ L t q t ➙ 0 is a one-dimensional α -stable Lévy process (symmetric: β ✏ 0 ) 1 ✁ i β sgn ♣ u q tan πα ✦ ✁ tc ⑤ u ⑤ α ✁ ✠✮ E e i uL t ✏ exp , α P ♣ 0 , 1 q ❨ ♣ 1 , 2 q 2 6 1 4 0.5 5 10 15 20 2 -0.5 -1 5 10 15 20 -1.5 -2 α ✏ 0 . 75 α ✏ 1 . 75 Pure jump process with enumerable many (small) jumps on any time interval, jump times are dense. 1 1 Cauchy–process α ✏ 1 1 � x 2 π 1 2 π e ✁ x 2 Brownian motion ❄ α ✏ 2 2 – Typeset by Foil T EX – 2

  4. C ONTINUOUS L ÉVY F LIGHTS 3 3. α -stable Lévy process (Lévy flights) Isometric α -stable LP in R m : Γ ♣✁ α c m,α ✏ π m ④ 2 2 q E e i ① L t ,λ ② ✏ exp ✑ ✁ tc m,α ⑥ λ ⑥ α ✙ α P ♣ 0 , 2 q , , Γ ♣ m � α 2 α 2 q dy Jump measure: ν ♣ dy q ✏ ⑥ y ⑥ α � m , α P ♣ 0 , 2 q 1 Cauchy process: α ✏ 1 , probability density p ♣ x q ✒ 1 � ⑥ x ⑥ 2 2.0 4 1.5 1.0 2 0.5 0.0 0 � 0.5 � 1.0 � 2 � 1.5 � 2.0 � 4 � 2.0 � 1.5 � 1.0 � 0.5 0.0 0.5 1.0 1.5 2.0 � 4 � 2 0 2 4 Brownian motion 1 . 50 -stable Lévy process – Typeset by Foil T EX – 3

  5. C ONTINUOUS L ÉVY F LIGHTS 4 4. Motivation and Setting Chechkin, Gonchar, Szydłowski, Physics of Plasmas 2002. l ✏ ♣ l t q t ➙ 0 is an isometric α -stable Lévy process in R 3 , E e i ① u,l t ② ✏ e ✁ t ⑥ u ⑥ α , u P R 3 , α P ♣ 0 , 2 q . Langevin equation for a particle in a external magnetic field B and Lévy electric field ✾ l : x � ε ✾ x ✏ r ✾ x ✂ B s ✁ ν ✾ ✿ l or x ε ✏ v ε , ✩ ✾ ☎ ☞ ν ✁ B 3 B 2 ✬ ✫ v ε ✏ r v ε ✂ B s ✁ νv ε � ε ✾ ✁ B 1 , A ✏ B 3 ν ✾ l ✆ ✌ ❧♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♥ ✁ B 2 B 1 ν ✬ ✪ ✏ : ✁ Av ε In other words, x ε is an integrated OU process: ➺ t ➺ t x ε v ε v ε Av ε t ✏ x 0 � t ✏ v 0 ✁ s d s � εl t s d s, 0 0 – Typeset by Foil T EX – 4

  6. C ONTINUOUS L ÉVY F LIGHTS 5 5. ε -dependent timescale Interesting events should occur on the time intervals of the order O ♣ 1 ε α q , ε Ñ 0 . Time transformation: t ÞÑ ε α . t Self-similarity of an α -stable process: Law ♣ εl t εα , t ➙ 0 q ✏ Law ♣ l q ✏ Law ♣ L q ➺ t ➺ t t ➺ εα εα ✏ ✁ 1 ✏ ✁ 1 Law V t : ✏ v t εα ✏ ✁ Av s d s � εl t εα d s � εl t AV s d s � L t , Av s ε α ε α εα 0 0 0 ➺ t ➺ t t ➺ εα v s d s ✏ 1 εα d s ✏ 1 X t : ✏ x t εα ✏ v s V s d s ε α ε α 0 0 0 From now on: on some probability space consider an α -stable Lévy process L and a family of processes t V ε , X ε ✉ (with big friction parameter 1 ε α Ñ ✽ ) ➺ t ✩ t ✏ ✁ 1 V ε AV ε s d s � L t , ✬ ✬ ε α ✫ Law ♣ V ε t , X ε t , t ➙ 0 q ✏ Law ♣ v ε εα , x ε 0 εα , t ➙ 0 q ➺ t t t 1 X ε V ε t ✏ ✬ s d s ✬ ε α ✪ 0 – Typeset by Foil T EX – 5

  7. C ONTINUOUS L ÉVY F LIGHTS 6 6. Explicit solution Ornstein–Uhlenbeck process: ➺ t ➺ t t ✏ ✁ 1 e ✁ t ✁ s εα A d L s V ε AV ε V ε s d s � L t ñ t ✏ ε α 0 0 Integrated Ornstein–Uhlenbeck process (Fubini): ➺ t ➺ t ✑ ➺ s t ✏ 1 s d s ✏ 1 ✙ εα A d L u A e ✁ s ✁ u AX ε AV ε d s ε α ε α 0 0 0 ➺ t ✑ ➺ t ✏ 1 ✙ A e ✁ s ✁ u εα A d s d L u ε α u 0 ➺ t ✁ εα A ✠ 1 ✁ e ✁ t ✁ u ✏ A ✁ 1 A d L u 0 The process X ε is absolutely continuous, non-Markovian, semimartingale. – Typeset by Foil T EX – 6

  8. C ONTINUOUS L ÉVY F LIGHTS 7 7. Convergence of f.d.d. Theorem 1. For any n ➙ 1 , 0 ↕ t 1 ➔ ☎ ☎ ☎ ➔ t n ➔ ✽ t n q P ♣ AX ε t 1 , . . . , AX ε Ñ ♣ L t 1 , . . . , L t n q , ε Ñ 0 . Assume: E i ① u,L t ② ✏ e ✁⑥ u ⑥ α , u P R d . α P ♣ 0 , 1 q , Show: P AX ε Ñ L t , ε Ñ 0 , t ➙ 0 . t – Typeset by Foil T EX – 7

  9. C ONTINUOUS L ÉVY F LIGHTS 8 8. Proof (convergence of one-dimensional distributions) ➺ t εα A d L s e ✁ t ✁ s AX ε t ✁ L t ✏ ✁ 0 n e ✁ t ✁ sk t ✁ L t q ✏ E exp ✦ ✮ E e i u ♣ AX ε ➳ εα A ∆ L s k ✁ i u lim n k ✏ 1 n E e ✁ i u e ✁ t ✁ sk εα A ∆ L sk ➵ ✏ lim n k ✏ 1 n ✎ ✁ u e ✁ t ✁ sk ✎ α ✎ εα A ✎ ➵ e ∆ s k ✏ lim n k ✏ 1 n α ✮ ✎ u e ✁ t ✁ sk ✎ εα A ✎ ✦ ➳ ✏ exp lim ∆ s k ✎ ✎ ✎ n k ✏ 1 ➺ t α ✎ εα A ✎ ✦ ✮ ✎ e ✁ t ✁ s ⑥ u ⑥ α ✏ exp Ñ 1 , ε Ñ 0 d s ✎ ✎ ✎ 0 ❧♦♦♦♦♠♦♦♦♦♥ Ñ 0 , s ✘ t, ε Ñ 0 – Typeset by Foil T EX – 8

  10. C ONTINUOUS L ÉVY F LIGHTS 9 9. Functional limit theorem? Convergence of f.d.d. does not imply convergence of the first passage times. s ↕ t X ε → a q P ♣ τ a ♣ X ε q ↕ t q ✏ P ♣ sup Need convergence in a path space D ♣r 0 , ✽q , R q with an appropriate metric. Problem: the limit α -stable Lévy process L is (in general) càdlàg the processes t AX ε ✉ ε → 0 are absolutely continuous. 1 2 3 4 5 � 0.1 � 0.2 � 0.3 – Typeset by Foil T EX – 9

  11. C ONTINUOUS L ÉVY F LIGHTS 10 10. Uniform convergence does not hold Consider the space D ♣r 0 , ✽q , R q with a (local) uniform topology associated with the metric d U,T ♣ x, x ✶ q : ✏ sup ⑤ x t ✁ x ✶ t ⑤ , T → 0 , t Pr 0 ,T s ➺ ✽ d U ♣ x, x ✶ q : ✏ e ✁ T ♣ 1 ❫ d U,T ♣ x, x ✶ qq d T 0 No U -convergence unless L is continuous (Brownian motion with drift): t ✁ L t ⑤ P d U,T ♣ AX ε , L q : ✏ sup ⑤ AX ε Û 0 , ε Ñ 0 . t Pr 0 ,T s – Typeset by Foil T EX – 10

  12. C ONTINUOUS L ÉVY F LIGHTS 11 11. Skorohod J 1 -convergence does not hold Skorohod (1956): J 1 -topology (as well as J 2 , M 1 , M 2 topologies) Consider continuous time changes ✦ ✮ λ : R � Ñ R � , strictly increasing and continuous , λ ♣ 0 q ✏ 0 , λ ♣�✽q ✏ �✽q Λ ✏ x n Ñ x there exists a sequence t λ n ✉ ⑨ Λ such that ô ⑤ λ n ♣ t q ✁ t ⑤ Ñ 0 , sup t ➙ 0 ⑤ x n ♣ λ n ♣ t qq ✁ x ♣ t q⑤ Ñ 0 for all T → 0 . sup t Pr 0 ,T s This topology in metrizable and the space D is Polish. No J 1 -convergence unless L is continuous (Brownian motion with drift): d J 1 ,T ♣ AX ε , L q P Û 0 , ε Ñ 0 . We need a weaker metric, such that the sup -functional is still continuous. – Typeset by Foil T EX – 11

  13. C ONTINUOUS L ÉVY F LIGHTS 12 12. Skorohod M 1 -covergence I For x P D ♣r 0 , T s , R q define a completed graph Γ x : Γ x : ✏ t♣ x 0 , 0 q✉ ❨ t♣ z, t q P R ✂ ♣ 0 , T s : z ✏ cx t ✁ � ♣ 1 ✁ c q x t for some c, c P r 0 , 1 s✉ , Γ x ⑨ R 2 . x Γ x 0 T 0 T Natural order on Γ x : t ➔ t ✶ or t ✏ t ✶ and ⑤ x t ✁ ✁ z ⑤ ↕ ⑤ x t ✁ ✁ z ✶ ⑤ . ♣ z, t q ↕ ♣ z ✶ , t ✶ q if – Typeset by Foil T EX – 12

  14. C ONTINUOUS L ÉVY F LIGHTS 13 13. Skorohod M 1 -convergence II Parametric representation of Γ x : continuous nondecreasing w.r.t. order mapping ♣ z u , t u q : r 0 , 1 s Ñ Γ x . Denote Π x the set of all parametric representations of Γ x . Skorohod M 1 -convergence on D ♣r 0 , T s , R q : x n Ñ x for any ♣ z, t q P Π x there is ♣ z n , t n q ⑨ Π x n such that ô ✦ ✮ ⑤ z n ⑤ t n u ✁ z u ⑤ , sup u ✁ t u ⑤ Ñ 0 , n Ñ ✽ . max sup u Pr 0 , 1 s u Pr 0 , 1 s This topology in metrizable and the space D ♣ R � , R ; M 1 q is Polish (see Whitt, Chapter 12.8). The sup -functional is continuous. Goal: Prove convergence AX ε Ñ L in D ♣r 0 , ✽q , R ; M 1 q in probability i.e. convergence of f.d.d. (done) and tightness . – Typeset by Foil T EX – 13

  15. C ONTINUOUS L ÉVY F LIGHTS 14 14. M 1 -oscillation function For x, y P R denote the segment ✈ x, y ✇ : ✏ t z P R : z ✏ x � c ♣ y ✁ x q , c P r 0 , 1 s✉ . M 1 -oscillation function M : R 3 Ñ r 0 , ✽q , ★ if x ❘ ✈ x 1 , x 2 ✇ , min t⑤ x ✁ x 1 ⑤ , ⑤ x 2 ✁ x ⑤✉ , M ♣ x 1 , x, x 2 q : ✏ x P ✈ x 1 , x 2 ✇ . 0 , M ♣ x 1 , x, x 2 q ✏ euclidean distance between the point x and the segment ✈ x 1 , x 2 ✇ . M(x ,x,x ) 1 2 x x 1 2 x – Typeset by Foil T EX – 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend