making polynomials robust to noise
play

Making Polynomials Robust to Noise Alexander Sherstov U C L A Noise - PowerPoint PPT Presentation

Making Polynomials Robust to Noise Alexander Sherstov U C L A Noise in computation 2 Noise in computation human error 2 Noise in computation human error malicious third party 2 Noise in computation human randomness error malicious


  1. Reduction to homogeneous case p : { − 1 , +1 } n → [ − 1 , +1] ● Decompose into homogeneous parts: p = p 0 + p 1 + · · · + p d ● Robustly approximate each : p i p i ( x + ✏ ) | < c − d k p i k ∞ | p i ( x ) � ˜ deg ˜ p i = O ( d ) ● Set p = ˜ ˜ p 0 + ˜ p 1 + · · · + ˜ p d 19

  2. Reduction to homogeneous case d X | p ( x ) − ˜ p ( x + ✏ ) | ≤ | p i ( x ) − ˜ p i ( x + ✏ ) | i =0 20

  3. Reduction to homogeneous case d X | p ( x ) − ˜ p ( x + ✏ ) | ≤ | p i ( x ) − ˜ p i ( x + ✏ ) | i =0 d X c − d k p i k ∞  i =0 20

  4. 20 Reduction to homogeneous case p i ( x + ✏ ) | } | p i ( x ) − ˜ c − d k p i k ∞ ≤ 4 d h X X i =0 i =0 d d p ( x + ✏ ) | ≤  | p ( x ) − ˜

  5. 20 Reduction to homogeneous case p i ( x + ✏ ) | } | p i ( x ) − ˜ c − d k p i k ∞ ≤ 4 d h ≤ 2 − Ω ( d ) X X i =0 i =0 d d p ( x + ✏ ) | ≤  | p ( x ) − ˜

  6. 20 Reduction to homogeneous case p i ( x + ✏ ) | } | p i ( x ) − ˜ c − d k p i k ∞ ≤ 4 d h ≤ 2 − Ω ( d ) X X i =0 i =0 d d p ( x + ✏ ) | ≤  | p ( x ) − ˜

  7. Reduction to homogeneous case � � d � � X For any p i ( x ) � ≤ 1 x ∈ { − 1 , +1 } n , � � � � � i =0 21

  8. Reduction to homogeneous case � � d � � X For any p i ( x ) � ≤ 1 x ∈ { − 1 , +1 } n , � � � � � i =0 � � d � � X p i ( x ) t i max � ≤ 1 � � ⇒ = � � − 1 ≤ t ≤ 1 � i =0 21

  9. Reduction to homogeneous case � � d � � X For any p i ( x ) � ≤ 1 x ∈ { − 1 , +1 } n , � � � � � i =0 � � d � � X p i ( x ) t i max � ≤ 1 � � ⇒ = � � − 1 ≤ t ≤ 1 � i =0 " d # X = E p i ( x ) i =0 21

  10. Reduction to homogeneous case � � d � � X For any p i ( x ) � ≤ 1 x ∈ { − 1 , +1 } n , � � � � � i =0 � � d � � X p i ( x ) t i max � ≤ 1 � � ⇒ = � � − 1 ≤ t ≤ 1 � i =0 " d # X = E p i ( x ) i =0 are coefficients of a polynomial p 0 ( x ) , . . . , p d ( x ) ⇒ = [ � 1 , +1] 7! [ � 1 , +1] 21

  11. Our solution ✔ 1. Robust approximation of a monomial n Y p ( x ) = x i i =1 2. Robust approximation of homogeneous p X Y p ( x ) = a S x i i ∈ S | S | = d ✔ 3. Robust approximation of arbitrary p 22

  12. Our solution ✔ 1. Robust approximation of a monomial n Y p ( x ) = x i i =1 2. Robust approximation of homogeneous p X Y p ( x ) = a S x i i ∈ S | S | = d ✔ 3. Robust approximation of arbitrary p 22

  13. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d 23

  14. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d X Define p = ˜ a S ˜ χ S | S | = d 23

  15. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d X Define p = ˜ a S ˜ χ S | S | = d Seems crazy! X | p ( x ) − ˜ p ( x + ✏ ) | ≤ | a S || � S ( x ) − ˜ � S ( x + ✏ ) | | S | = d 23

  16. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d X Define p = ˜ a S ˜ χ S | S | = d Seems crazy! X | p ( x ) − ˜ p ( x + ✏ ) | ≤ | a S || � S ( x ) − ˜ � S ( x + ✏ ) | | S | = d X | a S | · c − d ≤ | S | = d 23

  17. 23 } x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 � 1 · c − d � S ( x + ✏ ) | h ◆ 1 / 2 Homogeneous case ✓ n d | a S || � S ( x ) − ˜ max ≤ | a S | · c − d s.t. | S | = d | S | = d X X a S χ S χ S ≤ p ( x + ✏ ) | ≤ a S ˜ | S | = d | S | = d X X Seems crazy! p = | p ( x ) − ˜ p = ˜ Define Given:

  18. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d X Define p = ˜ a S ˜ χ S | S | = d Seems crazy! X | p ( x ) − ˜ p ( x + ✏ ) | ≤ | a S || � S ( x ) − ˜ � S ( x + ✏ ) | | S | = d 23

  19. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d X Define p = ˜ a S ˜ χ S | S | = d 24

  20. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d use this directly X Define p = ˜ a S ˜ χ S | S | = d 24

  21. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d use this directly X Define p = ˜ a S ˜ χ S | S | = d z 1 , z 2 , . . . , z i , . . . ∈ [0 , 1] n s.t. Find ∞ X p ( x ) − ˜ p ( x + ✏ ) = ⇠ i p ( z i ) , i =1 ∞ X | ξ i | < 2 − Ω ( d ) i =1 24

  22. Homogeneous case X Given: s.t. x ∈ { − 1 , +1 } n | p ( x ) | ≤ 1 max p = a S χ S | S | = d use this directly X Define p = ˜ a S ˜ χ S | S | = d } z 1 , z 2 , . . . , z i , . . . ∈ [0 , 1] n s.t. Find inverting h ∞ X p ( x ) − ˜ p ( x + ✏ ) = ⇠ i p ( z i ) , infinite matrix i =1 ∞ X | ξ i | < 2 − Ω ( d ) i =1 24

  23. Warmup: Boolean inputs Theorem. φ : { − 1 , +1 } n → R homogeneous of degree d δ : { − 1 , +1 } d → R symmetric Then: � �  d d � � X ˆ d ! k φ k ∞ k ˆ � � max φ ( S ) δ ( x | S ) δ k 1 � � x ∈ { − 1 , +1 } n � � | S | = d � � 25

  24. Warmup: Boolean inputs what we want Theorem. to robustly approximate φ : { − 1 , +1 } n → R homogeneous of degree d δ : { − 1 , +1 } d → R symmetric Then: � �  d d � � X ˆ d ! k φ k ∞ k ˆ � � max φ ( S ) δ ( x | S ) δ k 1 � � x ∈ { − 1 , +1 } n � � | S | = d � � 25

  25. Warmup: Boolean inputs what we want Theorem. to robustly approximate φ : { − 1 , +1 } n → R homogeneous of degree d error for δ : { − 1 , +1 } d → R symmetric a single monomial Then: � �  d d � � X ˆ d ! k φ k ∞ k ˆ � � max φ ( S ) δ ( x | S ) δ k 1 � � x ∈ { − 1 , +1 } n � � | S | = d � � 25

  26. Warmup: Boolean inputs what we want Theorem. to robustly approximate φ : { − 1 , +1 } n → R homogeneous of degree d error for δ : { − 1 , +1 } d → R symmetric a single monomial Then: � �  d d � � X ˆ d ! k φ k ∞ k ˆ � � max φ ( S ) δ ( x | S ) δ k 1 � � x ∈ { − 1 , +1 } n � � | S | = d � � cumulative error 25

  27. Warmup: Boolean inputs what we want Theorem. to robustly approximate φ : { − 1 , +1 } n → R homogeneous of degree d error for δ : { − 1 , +1 } d → R symmetric a single monomial Then: � �  d d � � X ˆ d ! k φ k ∞ k ˆ � � max φ ( S ) δ ( x | S ) δ k 1 � � x ∈ { − 1 , +1 } n � � | S | = d � � } cumulative error independent of n h 25

  28. Warmup: Boolean inputs what we want Theorem. to robustly approximate φ : { − 1 , +1 } n → R homogeneous of degree d error for δ : { − 1 , +1 } d → R symmetric a single monomial Then: � �  d d � � X ˆ d ! k φ k ∞ k ˆ � � max φ ( S ) δ ( x | S ) δ k 1 � � x ∈ { − 1 , +1 } n � � | S | = d � � } cumulative error independent of n h 25

  29. Warmup: Boolean inputs Idea: express error as linear combination of φ ( x ) , x ∈ { − 1 , +1 } n 26

  30. Warmup: Boolean inputs Idea: express error as linear combination of φ ( x ) , x ∈ { − 1 , +1 } n Key: operator A v : R { +1 , − 1 } n → R { − 1 , +1 } n 26

  31. Warmup: Boolean inputs Idea: express error as linear combination of φ ( x ) , x ∈ { − 1 , +1 } n Key: operator A v : R { +1 , − 1 } n → R { − 1 , +1 } n h j -th coordinate } ( A v f )( x ) = + · · · + z d x v d ! z 1 x v 1 + z 2 x v 2 j j j E z 1 z 2 . . . z d f . . . , , . . . d z ∈ { − 1 , +1 } d 26

  32. Warmup: Boolean inputs evaluate on non-Boolean Idea: express error as linear combination of inputs by identifying f φ ( x ) , x ∈ { − 1 , +1 } n with its multilinear extension to R n Key: operator A v : R { +1 , − 1 } n → R { − 1 , +1 } n h j -th coordinate } ( A v f )( x ) = + · · · + z d x v d ! z 1 x v 1 + z 2 x v 2 j j j E z 1 z 2 . . . z d f . . . , , . . . d z ∈ { − 1 , +1 } d 26

  33. Warmup: Boolean inputs ✔ linear 27

  34. Warmup: Boolean inputs ✔ linear ✔ bounded: k A v k ∞→∞ = 1 27

  35. Warmup: Boolean inputs ✔ linear ✔ bounded: k A v k ∞→∞ = 1 ✔ symmetric 27

  36. Warmup: Boolean inputs ✔ linear ✔ bounded: k A v k ∞→∞ = 1 ✔ symmetric ✔ A v χ { 1 , 2 ,...,d } = d ! E χ T d d { 1 , 2 ,...,d } T ∈ ( v 1+ ··· + vd ) 27

  37. Warmup: Boolean inputs A v χ S = d ! ( | S | = d ) E χ T d d S T ∈ ( v 1+ ··· + vd ) 28

  38. Warmup: Boolean inputs A v χ S = d ! ( | S | = d ) E χ T d d S T ∈ ( v 1+ ··· + vd ) ◆ d d ✓ d X χ T ⇒ d ! A 1 k 0 d − k χ S = = k T ∈ ( S k ) 28

  39. Warmup: Boolean inputs X χ T T ∈ ( S k ) ◆ d d ✓ d d ! A 1 k 0 d − k χ S = k 29

  40. Warmup: Boolean inputs d X ˆ X δ ( { 1 , . . . , k } ) χ T k =0 T ∈ ( S k ) d ◆ d d ✓ d X ˆ δ ( { 1 , . . . , k } ) d ! A 1 k 0 d − k χ S = k k =0 30

  41. Warmup: Boolean inputs = δ ( x | S ) d X ˆ X δ ( { 1 , . . . , k } ) χ T k =0 T ∈ ( S k ) d ◆ d d ✓ d X ˆ δ ( { 1 , . . . , k } ) d ! A 1 k 0 d − k χ S = k k =0 30

  42. Warmup: Boolean inputs = δ ( x | S ) d X ˆ X ˆ X φ ( S ) δ ( { 1 , . . . , k } ) χ T | S | = d k =0 T ∈ ( S k ) d ◆ d d ✓ d X ˆ X ˆ φ ( S ) δ ( { 1 , . . . , k } ) d ! A 1 k 0 d − k χ S = k | S | = d k =0 31

  43. Warmup: Boolean inputs = cumulative error = δ ( x | S ) d X ˆ X ˆ X φ ( S ) δ ( { 1 , . . . , k } ) χ T | S | = d k =0 T ∈ ( S k ) d ◆ d d ✓ d X ˆ X ˆ φ ( S ) δ ( { 1 , . . . , k } ) d ! A 1 k 0 d − k χ S = k | S | = d k =0 31

  44. Warmup: Boolean inputs = cumulative error = δ ( x | S ) d X ˆ X ˆ X φ ( S ) δ ( { 1 , . . . , k } ) χ T | S | = d k =0 T ∈ ( S k ) d ◆ d d ✓ d X ˆ δ ( { 1 , . . . , k } ) d ! A 1 k 0 d − k φ = k k =0 32

  45. 32 = cumulative error } bounded by 1 Warmup: Boolean inputs d ! A 1 k 0 d − k φ h = δ ( x | S ) ◆ d d χ T ✓ d k k ) X S δ ( { 1 , . . . , k } ) T ∈ ( δ ( { 1 , . . . , k } ) ˆ X k =0 d ˆ X k =0 = d φ ( S ) ˆ | S | = d X

  46. 32 = cumulative error } bounded by 1 Warmup: Boolean inputs d ! A 1 k 0 d − k φ h = δ ( x | S ) } ◆ d d χ T ✓ d k δ k 1 k ) X S δ ( { 1 , . . . , k } ) k ˆ T ∈ ( h bounded by δ ( { 1 , . . . , k } ) ˆ X k =0 d ˆ X k =0 = d φ ( S ) ˆ | S | = d X

  47. 32 ⇤ = cumulative error } bounded by 1 Warmup: Boolean inputs d ! A 1 k 0 d − k φ h = δ ( x | S ) } ◆ d d χ T ✓ d k δ k 1 k ) X S δ ( { 1 , . . . , k } ) k ˆ T ∈ ( h bounded by δ ( { 1 , . . . , k } ) ˆ X k =0 d ˆ X k =0 = d φ ( S ) ˆ | S | = d X

  48. Just proved: ✔ Theorem. φ : { − 1 , +1 } n → R homogeneous of degree d δ : { − 1 , +1 } d → R symmetric Then: � �  d d � � X ˆ d ! k φ k ∞ k ˆ � � max φ ( S ) δ ( x | S ) δ k 1 � � x ∈ { − 1 , +1 } n � � | S | = d � � 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend