from eulerian polynomials and chromatic polynomials to
play

From Eulerian Polynomials and Chromatic Polynomials to Hessenberg - PowerPoint PPT Presentation

From Eulerian Polynomials and Chromatic Polynomials to Hessenberg Varieties Michelle Wachs University of Miami 1 1 1 1 4 1 1 11 11 1 1 26 66 26 1 Eulerian polynomials - Eulers definition t t i = 1 t i 1 Eulerian


  1. From Eulerian Polynomials and Chromatic Polynomials to Hessenberg Varieties Michelle Wachs University of Miami 1 1 1 1 4 1 1 11 11 1 1 26 66 26 1

  2. Eulerian polynomials - Euler’s definition t � t i = 1 − t i ≥ 1

  3. Eulerian polynomials - Euler’s definition t � t i = 1 − t i ≥ 1 t � it i = (1 − t ) 2 i ≥ 1

  4. Eulerian polynomials - Euler’s definition t � t i = 1 − t i ≥ 1 t � it i = (1 − t ) 2 i ≥ 1 t (1 + t ) � i 2 t i = (1 − t ) 3 i ≥ 1

  5. Eulerian polynomials - Euler’s definition t � t i = 1 − t i ≥ 1 t � it i = (1 − t ) 2 i ≥ 1 t (1 + t ) � i 2 t i = (1 − t ) 3 i ≥ 1 t (1 + 4 t + t 2 ) � i 3 t i = (1 − t ) 4 i ≥ 1

  6. Eulerian polynomials - Euler’s definition Euler’s triangle t � t i = 1 − t 1 i ≥ 1 1 1 t � it i = 1 4 1 (1 − t ) 2 i ≥ 1 1 11 11 1 t (1 + t ) � 1 26 66 26 1 i 2 t i = (1 − t ) 3 i ≥ 1 Euler’s definition t (1 + 4 t + t 2 ) � i 3 t i = (1 − t ) 4 t A n ( t ) � i ≥ 1 i n t i = (1 − t ) n +1 i ≥ 1 Leonhard Euler (1707-1783)

  7. Eulerian polynomials - Euler’s definition Euler’s triangle t � t i = 1 − t 1 i ≥ 1 1 1 t � it i = 1 4 1 (1 − t ) 2 i ≥ 1 1 11 11 1 t (1 + t ) � 1 26 66 26 1 i 2 t i = (1 − t ) 3 i ≥ 1 Euler’s definition t (1 + 4 t + t 2 ) � i 3 t i = (1 − t ) 4 t A n ( t ) � i ≥ 1 i n t i = (1 − t ) n +1 i ≥ 1 Euler’s exponential generating function formula A n ( t ) z n 1 − t � n ! = e ( t − 1) z − t n ≥ 0 Leonhard Euler (1707-1783)

  8. Eulerian polynomials - Euler’s definition Euler’s triangle t � t i = 1 − t 1 i ≥ 1 1 1 t � it i = 1 4 1 (1 − t ) 2 i ≥ 1 1 11 11 1 t (1 + t ) � 1 26 66 26 1 i 2 t i = (1 − t ) 3 i ≥ 1 Euler’s definition t (1 + 4 t + t 2 ) � i 3 t i = (1 − t ) 4 t A n ( t ) � i ≥ 1 i n t i = (1 − t ) n +1 i ≥ 1 Euler’s exponential generating function formula A n ( t ) z n e ( t − 1) z − t = (1 − t ) e z 1 − t � n ! = e tz − te z n ≥ 0 Leonhard Euler (1707-1783)

  9. Eulerian polynomials - combinatorial interpretation For σ ∈ S n , Descent set: DES ( σ ) := { i ∈ [ n − 1] : σ ( i ) > σ ( i + 1) } σ = 3 . 25 . 4 . 1 DES ( σ ) = { 1 , 3 , 4 } Define des ( σ ) := | DES ( σ ) | . So des (32541) = 3

  10. Eulerian polynomials - combinatorial interpretation For σ ∈ S n , Descent set: DES ( σ ) := { i ∈ [ n − 1] : σ ( i ) > σ ( i + 1) } σ = 3 . 25 . 4 . 1 DES ( σ ) = { 1 , 3 , 4 } Define des ( σ ) := | DES ( σ ) | . So des (32541) = 3 Excedance set: EXC ( σ ) := { i ∈ [ n − 1] : σ ( i ) > i } σ = 32541 EXC ( σ ) = { 1 , 3 } Define exc ( σ ) := | EXC ( σ ) | . So exc (32541) = 2

  11. Eulerian polynomials - combinatorial interpretation des exc S 3 � 123 0 0 t des ( σ ) = 1+4 t + t 2 1 132 1 1 1 1 σ ∈ S 3 213 1 1 1 4 1 � t exc ( σ ) = 1+4 t + t 2 231 1 2 1 11 11 1 312 1 1 1 26 66 26 1 σ ∈ S 3 321 2 1

  12. Eulerian polynomials - combinatorial interpretation des exc S 3 � 123 0 0 t des ( σ ) = 1+4 t + t 2 1 132 1 1 1 1 σ ∈ S 3 213 1 1 1 4 1 � t exc ( σ ) = 1+4 t + t 2 231 1 2 1 11 11 1 312 1 1 1 26 66 26 1 σ ∈ S 3 321 2 1 Eulerian polynomial n − 1 � � � � � t j = t des ( σ ) = n t exc ( σ ) A n ( t ) = j j =0 σ ∈ S n σ ∈ S n

  13. Eulerian polynomials - combinatorial interpretation des exc S 3 � 123 0 0 t des ( σ ) = 1+4 t + t 2 1 132 1 1 1 1 σ ∈ S 3 213 1 1 1 4 1 � t exc ( σ ) = 1+4 t + t 2 231 1 2 1 11 11 1 312 1 1 1 26 66 26 1 σ ∈ S 3 321 2 1 Eulerian polynomial n − 1 � � � � � t j = t des ( σ ) = n t exc ( σ ) A n ( t ) = j j =0 σ ∈ S n σ ∈ S n MacMahon (1905) showed equidistribution of des and exc . Carlitz and Riordin (1955) showed these are Eulerian polynomials.

  14. Mahonian Permutation Statistics - q-analogs Let σ ∈ S n . Inversion Number: inv ( σ ) := |{ ( i , j ) : 1 ≤ i < j ≤ n , σ ( i ) > σ ( j ) }| . inv (3142) = 3 Major Index: � maj ( σ ) := i i ∈ DES ( σ ) maj (3142) = maj (3 . 14 . 2) = 1 + 3 = 4 Major Percy Alexander MacMahon (1854 - 1929)

  15. Mahonian Permutation Statistics - q-analogs inv maj S 3 123 0 0 132 1 2 213 1 1 231 2 2 312 2 1 321 3 3

  16. Mahonian Permutation Statistics - q-analogs inv maj S 3 123 0 0 � � q inv ( σ ) q maj ( σ ) = 132 1 2 σ ∈ S 3 σ ∈ S 3 213 1 1 1 + 2 q + 2 q 2 + q 3 = 231 2 2 312 2 1 321 3 3

  17. Mahonian Permutation Statistics - q-analogs inv maj S 3 123 0 0 � � q inv ( σ ) q maj ( σ ) = 132 1 2 σ ∈ S 3 σ ∈ S 3 213 1 1 1 + 2 q + 2 q 2 + q 3 = 231 2 2 (1 + q + q 2 )(1 + q ) 312 2 1 = 321 3 3

  18. Mahonian Permutation Statistics - q-analogs inv maj S 3 123 0 0 � � q inv ( σ ) q maj ( σ ) = 132 1 2 σ ∈ S 3 σ ∈ S 3 213 1 1 1 + 2 q + 2 q 2 + q 3 = 231 2 2 (1 + q + q 2 )(1 + q ) 312 2 1 = 321 3 3 Theorem (MacMahon 1905) � � q inv ( σ ) = q maj ( σ ) = [ n ] q ! σ ∈ S n σ ∈ S n where [ n ] q := 1 + q + · · · + q n − 1 and [ n ] q ! := [ n ] q [ n − 1] q · · · [1] q

  19. q-Eulerian polynomials � A inv , des q inv ( σ ) t des ( σ ) ( q , t ) := n σ ∈ S n � A maj , des q maj ( σ ) t des ( σ ) ( q , t ) := n σ ∈ S n � A inv , exc q inv ( σ ) t exc ( σ ) ( q , t ) := n σ ∈ S n � A maj , exc q maj ( σ ) t exc ( σ ) ( q , t ) := n σ ∈ S n

  20. q-Eulerian polynomials � A inv , des q inv ( σ ) t des ( σ ) ( q , t ) := n σ ∈ S n � q maj ( σ ) t des ( σ ) A maj , des ( q , t ) := n σ ∈ S n � A inv , exc q inv ( σ ) t exc ( σ ) ( q , t ) := n σ ∈ S n � q maj ( σ ) t exc ( σ ) A maj , exc ( q , t ) := n σ ∈ S n Theorem (MacMahon, 1916; Carlitz, 1954) q t i = tA maj , des ( q , t ) � n [ i ] n � n i =0 (1 − tq i ) i ≥ 1

  21. q-analogs of Euler’s exp. generating function formula Theorem (Stanley, 1976) ( q , t ) z n 1 − t � A inv , des [ n ] q ! = n Exp q ( z ( t − 1)) − t n ≥ 0 where q ( n 2 ) z n � Exp q ( z ) := [ n ] q ! n ≥ 0

  22. q-analogs of Euler’s exp. generating function formula Theorem (Stanley, 1976) ( q , t ) z n 1 − t � A inv , des [ n ] q ! = n Exp q ( z ( t − 1)) − t n ≥ 0 where q ( n 2 ) z n � Exp q ( z ) := [ n ] q ! n ≥ 0 Theorem (Shareshian-W., 2006) ( q , t ) z n (1 − tq ) exp q ( z ) � A maj , exc [ n ] q ! = n exp q ( ztq ) − tq exp q ( z ) n ≥ 0 where z n � exp q ( z ) := [ n ] q ! n ≥ 0

  23. q -Eulerian polynomials and q -Eulerian numbers Theorem (Shareshian-W., 2006) ( q , tq − 1 ) z n (1 − t ) exp q ( z ) � A maj , exc [ n ] q ! = n exp q ( zt ) − t exp q ( z ) n ≥ 0 We use symmetric function theory and bijective combinatorics to prove this.

  24. q -Eulerian polynomials and q -Eulerian numbers Theorem (Shareshian-W., 2006) ( q , tq − 1 ) z n (1 − t ) exp q ( z ) � A maj , exc [ n ] q ! = n exp q ( zt ) − t exp q ( z ) n ≥ 0 We use symmetric function theory and bijective combinatorics to prove this. From now on the q -Eulerian polynomials and the q -Eulerian numbers are � A n ( q , t ) := A maj , exc ( q , tq − 1 ) = q maj ( σ ) − exc ( σ ) t exc ( σ ) n σ ∈ S n � n � � q maj ( σ ) − exc ( σ ) q := j σ ∈ S n exc ( σ )= j So the result with Shareshian becomes (1 − t ) exp q ( z ) A n ( q , t ) z n � [ n ] q ! = exp q ( zt ) − t exp q ( z ) n ≥ 0

  25. Palindromicity and unimodality of the q -Eulerian numbers n \ j 0 1 2 3 4 1 1 2 1 1 2 + q + q 2 3 1 1 3 + 2 q + 3 q 2 + 2 q 3 + q 4 3 + 2 q + 3 q 2 + 2 q 3 + q 4 4 1 1 4 + 3 q + 5 q 2 + ... 6 + 6 q + 11 q 2 + ... 4 + 3 q + 5 q 2 + ... 5 1 1 Theorem (Shareshian-W., 2006) � � The q-Eulerian polynomial A n ( q , t ) = � n − 1 q t j is n t =0 j � � � � n n palindromic in the sense that q = q for j n − 1 − j 0 ≤ j ≤ n − 1 2 � � � � n n q − q ∈ N [ q ] for q-unimodal in the sense that j j − 1 1 ≤ j ≤ n − 1 2

  26. A symmetric function analog of the Eulerian polynomials Let ω be the involution on the ring of symmetric functions that takes the elementary symmetric functions e n to the complete homogeneous symmetric functions h n . For a homogeneous symmetric function f ( x 1 , x 2 , . . . ) of degree n with coefficients in ring R , the stable principal specialization of f is n � ps q ( f ( x 1 , x 2 , . . . )) = f (1 , q , q 2 , . . . ) (1 − q i ) ∈ R [ q ] . i =1

  27. A symmetric function analog of the Eulerian polynomials Let ω be the involution on the ring of symmetric functions that takes the elementary symmetric functions e n to the complete homogeneous symmetric functions h n . For a homogeneous symmetric function f ( x 1 , x 2 , . . . ) of degree n with coefficients in ring R , the stable principal specialization of f is n � ps q ( f ( x 1 , x 2 , . . . )) = f (1 , q , q 2 , . . . ) (1 − q i ) ∈ R [ q ] . i =1 Let W n := { w ∈ Z n > 0 : w i � = w i +1 ∀ i } (Smirnov words) and let � t des ( w ) x w 1 · · · x w n . W n ( x , t ) := w ∈ W n Example: 37572 ∈ W 5 contributes t 2 x 2 x 3 x 5 x 2 7 to W 5 ( x , t ).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend