shanghai jiaotong university how to generalize eulerian
play

Shanghai Jiaotong University How to generalize Eulerian polynomials - PowerPoint PPT Presentation

Shanghai Jiaotong University How to generalize Eulerian polynomials via combinatorics and continued fractions Jiang Zeng Universit e Claude Bernard Lyon 1, France May 14, 2018, Shanghai Plan of the talk 1 Eulerian polynomials 2 q


  1. Shanghai Jiaotong University How to generalize Eulerian polynomials via combinatorics and continued fractions Jiang Zeng Universit´ e Claude Bernard Lyon 1, France May 14, 2018, Shanghai

  2. Plan of the talk 1 Eulerian polynomials 2 q -Carlitz-Scoville’s multivariate Eulerian polynomials 3 Eulerian polynomials as moments of orthogonal polynomials 4 Multivariate generalizations of Eulerian polynomials

  3. Eulerian polynomials (Euler 1775) 1 t k = � 1 − t k ≥ 0 For n = 1 , 2 , . . . applying the operators ( tD ) n , with D = d dt , to the above identity we obtain �� � tA n ( t ) k n t k = � ( tD ) n t k = (1 − t ) n +1 . k ≥ 0 k ≥ 0 Thus A 1 ( t ) = 1 , A 2 ( t ) = 1 + t , A 3 ( t ) = 1 + 4 t + t 2 , A 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 .

  4. Exponential generating functions tA n ( t ) x n x n � � n ! (1 − t ) n +1 � k n t k 1 + n ! = 1 + n ≥ 1 n ≥ 1 k ≥ 0 (1 − t ) n ( kx ) n � t k � = 1 + (1 − t ) n ! k ≥ 0 n ≥ 1 t k ( e k (1 − t ) x − 1) � = 1 + (1 − t ) k ≥ 0 1 − t = 1 − te (1 − t ) x . (1) or A n ( t ) x n 1 − t � 1 + n ! = e ( t − 1) x − t . (2) n ≥ 1

  5. Stieltjes continued fraction (1890) The formal Laplace transformation is a linear operator L on K [[ x ]] defined by � ∞ L ( t n , x ) = n ! x n +1 = t n e − t / x dt n ≥ 0 . for 0 n ≥ 0 a n t n n ≥ 0 a n x n +1 . If f ( t ) = � n ! , then L ( f ( t ) , x ) = � � ∞ x 1 − t e y (1 − t ) − t e − y / x dy = x 0 1 − tx 1 − 2 x 1 − 2 tx 1 − 1 − · · ·

  6. Stieltjes continued fraction (1890) 1 − t Noticing that e y (1 − t ) − t is the generating function of Eulerian polynomials the above formula is equivalent to ∞ 1 A n ( t ) x n = � 1 + x n =1 1 − tx 1 − 2 x 1 − 2 tx 1 − 1 − · · · 1 = , 1 · t x 2 1 − 1 · x − 2 2 · t x 2 1 − (2 + t ) · x − 1 − (3 + 2 t ) · x − 3 2 · t x 2 · · · where b k = k (1 + t ) + 1 and λ k = k 2 t . The t = 1 case is due to Euler.

  7. Combinatorial interpretations Let S n be the set of permutations on [ n ] := { 1 , . . . , n } . des σ = # { i ∈ [ n − 1] | σ ( i ) > σ ( i + 1) } , exc σ = # { i ∈ [ n ] | σ ( i ) > i } , wex σ = # { i ∈ [ n ] | σ ( i ) ≥ i } . Proposition 1 (Riordan (1958), MacMahon (1900)) t des σ = t exc σ = � � � t wex σ − 1 . A n ( t ) = σ ∈ S n σ ∈ S n σ ∈ S n

  8. An example for S 3 σ des exc wex 1 2 3 0 0 3 1 3 2 1 1 2 2 1 3 1 1 2 2 3 1 1 2 2 3 1 2 1 1 1 3 2 1 2 1 2 Hence A 3 ( t ) = 1 + 4 t + t 2 . The equidistribution exc ∼ des can be explained by Foata’s transformation. The mapping σ �→ τ defined by τ = σ (2) . . . σ ( n ) σ (1) has the property that wex( σ ) = 1 + exc( τ ).

  9. More definitions Definition 1 For σ ∈ S n , let σ (0) = σ ( n + 1) = n + 1. Then any entry σ ( i ) ( i ∈ [ n ]) can be classified according to one of the four cases: a peak if σ ( i − 1) < σ ( i ) and σ ( i ) > σ ( i + 1); a valley if σ ( i − 1) > σ ( i ) and σ ( i ) < σ ( i + 1); a double ascent if σ ( i − 1) < σ ( i ) and σ ( i ) < σ ( i + 1); a double descent if σ ( i − 1) > σ ( i ) and σ ( i ) > σ ( i + 1). Let val ( σ ) , pk ( σ ) , da ( σ ), and dd ( σ ) be the numbers of valleys, peaks, double ascents and double descents in σ , respectively.

  10. Carlitz and Scoville’s formula For σ ∈ S n with σ (0) = σ ( n + 1) = n + 1 let w ( σ ) = u val ( σ ) u pk ( σ ) u da ( σ ) u dd ( σ ) . 1 2 3 4 Carlitz and Scoville (1974) proved the following generalization of Euler’s formula: e α 2 x − e α 1 x x n � � w ( σ ) = u 1 α 2 e α 1 x − α 1 e α 2 x n ! n ≥ 1 σ ∈ S n = u 1 x + u 1 ( u 3 + u 4 ) x 2 � x 3 � ( u 3 + u 4 ) 2 + 2 u 1 u 2 2! + u 1 3! + · · · , where u 4 + u 3 = α 1 + α 2 , u 1 u 2 = α 1 α 2 .

  11. q -analogs of exponential function e u n =0 (1 − aq n ) and ( a ; q ) n = � n − 1 Let ( a ; q ) ∞ = � ∞ k =0 (1 − aq n ). Euler (1748) u n (1 − uq n ) − 1 = � � e q ( u ) := ; ( q ; q ) n n ≥ 0 n ≥ 0 u n q ( n 2 ) � � (1 + uq n ) = E q ( u ) := . ( q ; q ) n n ≥ 0 n ≥ 0 Cauchy (1843) u n ( au ; q ) ∞ � = ( a ; q ) n . ( u ; q ) ∞ ( q ; q ) n n ≥ 0

  12. q -analogs (combinatorial version) An inversion of the permutation σ ∈ S n is a pair ( σ i , σ j ) such that i < j and σ i > σ j . Let inv( σ ) be the number of inversions of σ . For n ∈ N let [ n ] q = 1 + q + · · · + q n − 1 = 1 − q n 1 − q . Then it is known that q inv( π ) = n ! q := [1] q [2] q . . . [ n ] q . � (3) π ∈ S n The two combinatorial versions of q -exponential function are ∞ ∞ x n 2 ) x n q ( n � � exp q ( x ) = Exp q ( x ) = , and n ! q n ! q n =0 n =0 where 0! q = 1.

  13. q -differential operator d The q -analog δ of the derivative dx for f ( x ) ∈ C [[ x ]] is defined by δ x ( f ( x )) = f ( x ) − f ( qx ) . (1 − q ) x Thus δ x (1) = 0 and for n > 0, δ x ( x n ) = [ n ] q x n − 1 . Also, for f ( x ) , g ( x ) ∈ C [[ x ]], δ x ( f ( x ) g ( x )) = δ x ( f ( x )) g ( x ) + f ( qx ) δ x ( g ( x )) , and � f ( x ) � = δ x ( f ( x )) g ( x ) − f ( x ) δ x ( g ( x )) δ x . g ( x ) g ( x ) g ( qx )

  14. Stanley’s inv q -analog Let A n ( t , q ) be the combinatorial q -analog of Eulerian polynomials defined by � A inv t 1+des( σ ) q inv( σ ) . n ( t , q ) = σ ∈ S n Then Stanley (1976) proved the following q -analogue of Euler’s generating function formula ∞ n ( t , q ) x n 1 − t � A inv 1 + = 1 − t exp q ( x (1 − t )) . (4) n ! q n =1

  15. q -analog of Carlitz-Scoville’s formula Theorem 2 (Pan-Z., 2018) Let � u val ( σ ) u pk ( σ ) u da ( σ ) u dd ( σ ) q inv( σ ) . P n ( u 1 , u 2 , u 3 , u 4 , q ) = (5) 1 2 3 4 σ ∈ S n Then P n ( u 1 , u 2 , u 3 , u 4 , q ) x n � n ! q n ≥ 1 � � � � exp q ( α 2 − u 4 ) x − exp q ( α 1 − u 4 ) x = u 1 � , (6) � � � α 2 exp q ( α 1 − u 4 ) x − α 1 exp q ( α 2 − u 4 ) x where u 4 + u 3 = α 1 + α 2 , u 1 u 2 = α 1 α 2 .

  16. Sketch of Proof Let P n := P n ( u 1 , u 2 , u 3 , u 4 , q ). Lemma 3 We have P 1 = u 1 and for n ≥ 1 , n − 1 � n � � P n +1 = ( q n u 4 + u 3 )P n + q k u 2 P n − k P k , (7) k q k =1 � n � where the q-binomial coefficients q are defined by k � n � n ! q = (0 ≤ k ≤ n ) . k ! q ( n − k )! q k q Proof The identity is straightforward by considering the position of n + 1 in the permutations of S n +1 as in the case of Eulerian polynomials.

  17. n ≥ 1 P n x n Let P( x ) := � n ! q . Then the above equation is equivalent to the q -differential equation δ x (P( x )) = u 3 P( x ) + u 4 P( qx ) + u 2 P( qx )P( x ) + u 1 . (8) Lemma 4 n ≥ 0 a n x n be a series with complex Let 0 < q < 1 and f ( x ) = � coefficients. Then δ x ( f ( x )) = 0 if and only if f ( x ) = f (0) , δ x ( f ( x )) = f ( x ) if and only if f ( x ) = f (0) exp q ( x ) . The result follows then by solving the q -differential equation (8).

  18. A recent formula of Zhuang (2017) Let P (inv , pk , des) � q inv( π ) y pk ( π )+ 1 t des( π )+1 . ( q , y , t ) := n π ∈ S n Then ∞ ( q , y , t ) x n � P (inv , pk , des) n n ! q n =1 � � � � u (1 − v ) 1 − v Exp q 1+ uv x exp q 1+ uv x − 1 = v (1 + u ) � , (9) � � � 1 + uv u (1 − v ) 1 − v 1 − v Exp q exp q 1+ uv x 1+ uv x where � � � 1 + t 2 − 2 yt − (1 − t ) (1 + t ) 2 − 4 yt u = / (2(1 − y ) t ) , � � � (1 + t ) 2 − 2 yt − (1 + t ) (1 + t ) 2 − 4 yt v = / (2 yt ) .

  19. Proof. Note that P (inv , pk , des) ( q , y , t ) = ytP n (1 , yt , 1 , t , q ). Hence the n generating function in (9) is equal to yt ( P ( x ) − 1) with u 1 = u 3 = 1, u 2 = yt and u 4 = t . The generating function is � � � � Exp q ( α 2 − 1) x exp q ( α 2 − t ) x − 1 α 1 1 − α 1 � � � � ( α 2 − 1) x exp q ( α 2 − t ) x α 2 Exp q with α 1 + α 2 = 1 + t and α 1 α 2 = yt . Then, Zhuang’s result follows by choosing α 1 = v (1 + u ) / (1 + uv ); α 2 = (1 + u ) / (1 + uv ) .

  20. S-type and J-type continued fractions If ( a n ) n ≥ 0 is a sequence of combinatorial numbers or polynomials with a 0 = 1, it is often fruitful to seek to express its ordinary generating function (OGF) as a continued fraction of either Stieltjes type (S-type), ∞ 1 a n t n = � , α 1 t n =0 1 − α 2 t 1 − 1 − · · · or Jacobi type (J-type), ∞ 1 a n t n = � , β 1 t 2 n =0 1 − γ 0 t − β 2 t 2 1 − γ 1 t − 1 − · · ·

  21. Contraction formulae of an S-fraction to a J-fraction Both sides of these expressions are to be interpreted as formal power series inthe inderterminate x . 1 1 = . α 1 α 2 x 2 α 1 x 1 − 1 − α 1 x − 1 − ( α 2 + α 3 ) x − α 3 α 4 x 2 1 − α 2 x · · · · · · i.e., γ 0 = α 1 γ n = α 2 n + α 2 n +1 for n ≥ 1 β n = α 2 n − 1 α 2 n .

  22. Euler’s continued fraction formulae 1 n ! x n = � 1 x n ≥ 0 1 − 1 x 1 − 2 x 1 − 1 − 2 x · · · 1 = 1 2 x 2 1 − x − 1 − 3 x − 2 2 x 2 · · · with coefficients α 2 k − 1 = k , α 2 k = k .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend