eulerian polynomials chromatic quasisymmetric functions
play

Eulerian polynomials, chromatic quasisymmetric functions, and - PowerPoint PPT Presentation

Eulerian polynomials, chromatic quasisymmetric functions, and Hessenberg varieties Michelle Wachs University of Miami Joint work with John Shareshian Eulerian Polynomials For S n DES ( ) := { i { 1 , . . . , n 1 } : ( i )


  1. Eulerian polynomials, chromatic quasisymmetric functions, and Hessenberg varieties Michelle Wachs University of Miami Joint work with John Shareshian

  2. Eulerian Polynomials For σ ∈ S n DES ( σ ) := { i ∈ { 1 , . . . , n − 1 } : σ ( i ) > σ ( i + 1) } des ( σ ) := | DES ( σ ) | For σ = 3 . 25 . 4 . 1 DES ( σ ) = { 1 , 3 , 4 } des ( σ ) = 3 Eulerian polynomial � t des ( σ ) A n ( t ) = σ ∈ S n A 1 ( t ) = 1 A 2 ( t ) = 1 + t palindromic A 3 ( t ) = 1 + 4 t + t 2 A 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 unimodal A 5 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4

  3. Eulerian Polynomials For σ ∈ S n DES ( σ ) := { i ∈ { 1 , . . . , n − 1 } : σ ( i ) > σ ( i + 1) } des ( σ ) := | DES ( σ ) | For σ = 3 . 25 . 4 . 1 DES ( σ ) = { 1 , 3 , 4 } des ( σ ) = 3 Eulerian polynomial � t des ( σ ) A n ( t ) = σ ∈ S n A 1 ( t ) = 1 A 2 ( t ) = 1 + t palindromic A 3 ( t ) = 1 + 4 t + t 2 A 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 unimodal A 5 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4

  4. Eulerian Polynomials For σ ∈ S n DES ( σ ) := { i ∈ { 1 , . . . , n − 1 } : σ ( i ) > σ ( i + 1) } des ( σ ) := | DES ( σ ) | For σ = 3 . 25 . 4 . 1 DES ( σ ) = { 1 , 3 , 4 } des ( σ ) = 3 Eulerian polynomial � t des ( σ ) A n ( t ) = σ ∈ S n A 1 ( t ) = 1 A 2 ( t ) = 1 + t palindromic A 3 ( t ) = 1 + 4 t + t 2 A 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 unimodal A 5 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4

  5. Eulerian Polynomials A new formula? ⌊ n +1 2 ⌋ � � m n � � � t m − 1 A n ( t ) = [ k i − 1] t k 1 − 1 , k 2 , . . . , k m m =1 k 1 ,..., k m ≥ 2 i =1 where [ k ] t := 1 + t + · · · + t k − 1 .

  6. Eulerian Polynomials A new formula? ⌊ n +1 2 ⌋ � � m n � � � t m − 1 A n ( t ) = [ k i − 1] t k 1 − 1 , k 2 , . . . , k m m =1 k 1 ,..., k m ≥ 2 i =1 where [ k ] t := 1 + t + · · · + t k − 1 . Sum & Product Lemma: Let A ( t ) and B ( t ) be positive, unimodal, palindromic with respective centers of symmetry c A and c B . Then A ( t ) B ( t ) is positive, unimodal, and palindromic with center of symmetry c A + c B . If c A = c B then A ( t ) + B ( t ) is positive, unimodal and palindromic with center of symmetry c A .

  7. Eulerian Polynomials A new formula? ⌊ n +1 2 ⌋ � � m n � � � t m − 1 A n ( t ) = [ k i − 1] t k 1 − 1 , k 2 , . . . , k m m =1 k 1 ,..., k m ≥ 2 i =1 where [ k ] t := 1 + t + · · · + t k − 1 . Sum & Product Lemma: Let A ( t ) and B ( t ) be positive, unimodal, palindromic with respective centers of symmetry c A and c B . Then A ( t ) B ( t ) is positive, unimodal, and palindromic with center of symmetry c A + c B . If c A = c B then A ( t ) + B ( t ) is positive, unimodal and palindromic with center of symmetry c A . Center of symmetry: m k i − 2 = 1 � ( m − 1) + 2( n − 1) . 2 i =1

  8. A n ( t ) z n 1 − t � 1 + = (Euler’s exponential generating function formula) e z ( t − 1) − t n ! n ≥ 1 (1 − t ) exp( z ) = exp( zt ) − t exp( z ) 1 − t = exp( z ) t k z k − tz k � k ≥ 0 k ! 1 − t = exp( z ) ( t k − t ) z k � k ≥ 0 k ! − 1     z r t [ k − 1] t z k � � =  1 −   r ! k ! r ≥ 0 k ≥ 2 m     z r t [ k − 1] t z k �  � � =  r ! k ! r ≥ 0 m ≥ 0 k ≥ 2 ⌊ n 2 ⌋ n m � � n � � � t m � A n ( t ) = [ k i − 1] t r , k 1 , . . . , k m m =0 r =0 k 1 ,..., k m ≥ 2 i =1 = further manipulations ⌊ n +1 2 ⌋ m � � n � � � t m − 1 = [ k i − 1] t k 1 − 1 , k 2 , . . . , k m m =1 k 1 ,..., k m ≥ 2 i =1

  9. Mahonian Permutation Statistics - q-analog Let σ ∈ S n . Inversion Number: inv ( σ ) := |{ ( i , j ) : 1 ≤ i < j ≤ n , σ ( i ) > σ ( j ) }| . inv (32541) = 6 Major Index: � maj ( σ ) := i i ∈ DES ( σ ) maj (32541) = maj (3 . 25 . 4 . 1) = 1 + 3 + 4 = 8

  10. Mahonian Permutation Statistics - q-analog Let σ ∈ S n . Inversion Number: inv ( σ ) := |{ ( i , j ) : 1 ≤ i < j ≤ n , σ ( i ) > σ ( j ) }| . inv (32541) = 6 Major Index: � maj ( σ ) := i i ∈ DES ( σ ) maj (32541) = maj (3 . 25 . 4 . 1) = 1 + 3 + 4 = 8 Theorem (MacMahon 1905) � � q inv ( σ ) = q maj ( σ ) = [ n ] q ! σ ∈ S n σ ∈ S n where [ n ] q := 1 + q + · · · + q n − 1 and [ n ] q ! := [ n ] q [ n − 1] q · · · [1] q

  11. Rawlings major index Let 1 ≤ r ≤ n . For σ ∈ S n , set inv < r ( σ ) := |{ ( i , j ) : 1 ≤ i < j ≤ n , 0 < σ ( i ) − σ ( j ) < r }| . DES ≥ r ( σ ) := { i ∈ [ n − 1] : σ ( i ) − σ ( i + 1) ≥ r } � maj ≥ r ( σ ) := i i ∈ DES ≥ r � maj if r = 1 Note maj ≥ r + inv < r = inv if r = n

  12. Rawlings major index Let 1 ≤ r ≤ n . For σ ∈ S n , set inv < r ( σ ) := |{ ( i , j ) : 1 ≤ i < j ≤ n , 0 < σ ( i ) − σ ( j ) < r }| . DES ≥ r ( σ ) := { i ∈ [ n − 1] : σ ( i ) − σ ( i + 1) ≥ r } � maj ≥ r ( σ ) := i i ∈ DES ≥ r � maj if r = 1 Note maj ≥ r + inv < r = inv if r = n Theorem (Rawlings, 1981) � q maj ≥ r ( σ )+ inv < r ( σ ) = [ n ] q ! σ ∈ S n

  13. Rawlings major index Let 1 ≤ r ≤ n . For σ ∈ S n , set inv < r ( σ ) := |{ ( i , j ) : 1 ≤ i < j ≤ n , 0 < σ ( i ) − σ ( j ) < r }| . DES ≥ r ( σ ) := { i ∈ [ n − 1] : σ ( i ) − σ ( i + 1) ≥ r } � maj ≥ r ( σ ) := i i ∈ DES ≥ r � maj if r = 1 Note maj ≥ r + inv < r = inv if r = n Theorem (Rawlings, 1981) � q maj ≥ r ( σ )+ inv < r ( σ ) = [ n ] q ! σ ∈ S n � A ( r ) q maj ≥ r ( σ ) t inv < r ( σ ) n ( q , t ) := σ ∈ S n

  14. n ( q , t ) := � A ( r ) σ ∈ S n q maj ≥ r ( σ ) t inv < r ( σ ) A (1) n ( q , t ) = � σ ∈ S n q maj ( σ ) = [ n ] q ! A ( n ) n ( q , t ) = � σ ∈ S n t inv ( σ ) = [ n ] t ! A (2) n ( q , t ) =?

  15. n ( q , t ) := � A ( r ) σ ∈ S n q maj ≥ r ( σ ) t inv < r ( σ ) A (1) n ( q , t ) = � σ ∈ S n q maj ( σ ) = [ n ] q ! A ( n ) n ( q , t ) = � σ ∈ S n t inv ( σ ) = [ n ] t ! A (2) n ( q , t ) =? inv < 2 (635142) = 3 since ( < 2)-inversions are 635142 635142 635142

  16. n ( q , t ) := � A ( r ) σ ∈ S n q maj ≥ r ( σ ) t inv < r ( σ ) A (1) n ( q , t ) = � σ ∈ S n q maj ( σ ) = [ n ] q ! A ( n ) n ( q , t ) = � σ ∈ S n t inv ( σ ) = [ n ] t ! A (2) n ( q , t ) =? inv < 2 (635142) = 3 since ( < 2)-inversions are 635142 635142 635142 (635142) − 1 = 46 . 25 . 3 . 1

  17. n ( q , t ) := � A ( r ) σ ∈ S n q maj ≥ r ( σ ) t inv < r ( σ ) A (1) n ( q , t ) = � σ ∈ S n q maj ( σ ) = [ n ] q ! A ( n ) n ( q , t ) = � σ ∈ S n t inv ( σ ) = [ n ] t ! A (2) n ( q , t ) =? inv < 2 (635142) = 3 since ( < 2)-inversions are 635142 635142 635142 (635142) − 1 = 46 . 25 . 3 . 1 A (2) n (1 , t ) = � σ ∈ S n t des ( σ ) = A n ( t ) inv < 2 ( σ ) = des ( σ − 1 )

  18. n ( q , t ) := � A ( r ) σ ∈ S n q maj ≥ r ( σ ) t inv < r ( σ ) A (1) n ( q , t ) = � σ ∈ S n q maj ( σ ) = [ n ] q ! A ( n ) n ( q , t ) = � σ ∈ S n t inv ( σ ) = [ n ] t ! A (2) n ( q , t ) =? inv < 2 (635142) = 3 since ( < 2)-inversions are 635142 635142 635142 (635142) − 1 = 46 . 25 . 3 . 1 A (2) n (1 , t ) = � σ ∈ S n t des ( σ ) = A n ( t ) inv < 2 ( σ ) = des ( σ − 1 ) So A ( r ) n (1 , t ) is a generalized Eulerian polynomial and A ( r ) n ( q , qt ) is a Mahonian q -analog.

  19. Generalized Eulerian polynomial n (1 , t ) = � A ( r ) n ( t ) := A ( r ) σ ∈ S n t inv < r ( σ ) Eulerian polynomials are palindromic and unimodal. A (2) 3 ( t ) = 1 + 4 t + t 2 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 A (2) What about generalized Eulerian polynomials?

  20. Generalized Eulerian polynomial n (1 , t ) = � A ( r ) n ( t ) := A ( r ) σ ∈ S n t inv < r ( σ ) Eulerian polynomials are palindromic and unimodal. A (2) 3 ( t ) = 1 + 4 t + t 2 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 A (2) What about generalized Eulerian polynomials? � t inv ( σ ) = [ n ] t ! A ( n ) n ( t ) = σ ∈ S n

  21. Generalized Eulerian polynomial n (1 , t ) = � A ( r ) n ( t ) := A ( r ) σ ∈ S n t inv < r ( σ ) Eulerian polynomials are palindromic and unimodal. A (2) 3 ( t ) = 1 + 4 t + t 2 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 A (2) What about generalized Eulerian polynomials? n � � t inv ( σ ) = [ n ] t ! = A ( n ) (1 + t + · · · + t i ) n ( t ) = σ ∈ S n i =1

  22. Generalized Eulerian polynomial n (1 , t ) = � A ( r ) n ( t ) := A ( r ) σ ∈ S n t inv < r ( σ ) Eulerian polynomials are palindromic and unimodal. A (2) 3 ( t ) = 1 + 4 t + t 2 4 ( t ) = 1 + 11 t + 11 t 2 + t 3 A (2) What about generalized Eulerian polynomials? n � � t inv ( σ ) = [ n ] t ! = A ( n ) (1 + t + · · · + t i ) n ( t ) = σ ∈ S n i =1 A ( n − 1) � [ n ] t [ n − 2] t + nt n − 2 � ( t ) = [ n − 2] t ! n center of symmetry: 1 2 (( n − 1) + ( n − 3)) = n − 2

  23. n ( t ) = � Generalized Eulerian polynomial A ( r ) σ ∈ S n t inv < r ( σ ) Problem (Stanley EC1, 1.50 f): Prove that A ( r ) n ( t ) is palindromic and unimodal. Solution:

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend