transition matrices for symmetric and quasisymmetric hall
play

Transition matrices for symmetric and quasisymmetric Hall-Littlewood - PowerPoint PPT Presentation

Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomials Nick Loehr Virginia Tech and U.S. Naval Academy Luis Serrano LaCIM, UQ` AM Greg Warrington University of Vermont FPSAC SFCA Paris, France June


  1. Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomials Nick Loehr – Virginia Tech and U.S. Naval Academy Luis Serrano – LaCIM, UQ` AM Greg Warrington – University of Vermont FPSAC – SFCA Paris, France June 27, 2013 1 / 41

  2. Original motivation Schur − → fundamental quasisymmetric s 31 = F 31 + F 22 + F 13 2 / 41

  3. Original motivation Schur − → fundamental quasisymmetric s 31 = F 31 + F 22 + F 13 monomial symmetric − → monomial quasisymmetric m 31 = M 31 + M 13 2 / 41

  4. Original motivation Schur − → fundamental quasisymmetric s 31 = F 31 + F 22 + F 13 monomial symmetric − → monomial quasisymmetric m 31 = M 31 + M 13 Hall-Littlewood polynomials P λ ( x ; t ) P λ ( x ; 0) = s λ P λ ( x ; 1) = m λ 2 / 41

  5. Original motivation Schur − → fundamental quasisymmetric s 31 = F 31 + F 22 + F 13 monomial symmetric − → monomial quasisymmetric m 31 = M 31 + M 13 Hall-Littlewood polynomials P λ ( x ; t ) P λ ( x ; 0) = s λ P λ ( x ; 1) = m λ Question: Is there some quasisymmetric expansion of P λ which: ◮ at t = 0 gives us the fundamental expansion of Schur functions, and ◮ at t = 1 gives us the monomial quasisymmetric expansion of monomial symmetric functions? 2 / 41

  6. Prism of bases Hall-Littlewood t=0 t=1 Symmetric Functions Schur monomial Hivert t=0 t=1 Quasisymmetric Functions Fundamental Monomial 3 / 41

  7. Prism of bases Hall-Littlewood Symmetric Functions Schur monomial Hivert Quasisymmetric Functions Fundamental Monomial 4 / 41

  8. Symmetric functions monomial: � x 4 i x 2 j x 1 m 421 = k i , j , k 5 / 41

  9. Symmetric functions monomial: � x 4 i x 2 j x 1 m 421 = k i , j , k Schur: x 2 x 1 x 2 s 21 = 1 x 2 + + x 1 x 2 x 3 + x 1 x 2 x 3 · · · 2 2 2 3 2 1 1 1 2 1 2 1 3 5 / 41

  10. Prism of bases Hall-Littlewood Symmetric Functions SSYT Schur monomial Hivert Quasisymmetric Functions Fundamental Monomial 6 / 41

  11. Prism of bases Hall-Littlewood Symmetric Functions SRHT Schur monomial (E˘ gecio˘ glu – Remmel) Hivert Quasisymmetric Functions Fundamental Monomial 7 / 41

  12. Quasisymmetric functions Monomial: � x 1 i x 4 j x 2 M 142 = k i < j < k 8 / 41

  13. Quasisymmetric functions Monomial: � x 1 i x 4 j x 2 M 142 = k i < j < k Fundamental (refinement order – Gessel): F 23 = M 23 + M 221 + M 212 + M 2111 + M 113 + M 1121 + M 1112 + M 11111 8 / 41

  14. Prism of bases Hall-Littlewood Symmetric Functions Schur monomial Hivert Quasisymmetric Functions refinement Fundamental Monomial (Gessel) 9 / 41

  15. Prism of bases Hall-Littlewood Symmetric Functions Schur monomial Hivert Quasisymmetric Functions M¨ obius Fundamental inversion Monomial 10 / 41

  16. Prism of bases Hall-Littlewood Symmetric Functions Schur monomial descents unsort Hivert (Gessel) Quasisymmetric Functions Fundamental Monomial 11 / 41

  17. Symmetric to quasisymmetric Schur to fundamental, sum over descent compositions (Gessel) s 31 = F 31 + F 22 + F 13 4 3 2 1 2 3 1 2 4 1 3 4 12 / 41

  18. Symmetric to quasisymmetric Schur to fundamental, sum over descent compositions (Gessel) s 31 = F 31 + F 22 + F 13 4 3 2 1 2 3 1 2 4 1 3 4 Monomial symmetric to monomial quasisymmetric (unsort) m 321 = M 321 + M 312 + M 213 + M 231 + M 132 + M 123 12 / 41

  19. Prism of bases Hall-Littlewood Symmetric Functions Schur monomial (Egge-Loehr- sort Hivert Warrington, Garsia) Quasisymmetric Functions Fundamental Monomial 13 / 41

  20. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? 14 / 41

  21. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 14 / 41

  22. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 (First year graduate student’s dream) 14 / 41

  23. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 (First year graduate student’s dream) What is s 13 ???? 14 / 41

  24. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 (First year graduate student’s dream) What is s 13 ???? s 13 = − s 22 . 14 / 41

  25. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 (First year graduate student’s dream) What is s 13 ???? s 13 = − s 22 . What is s α if α is not a partition? 14 / 41

  26. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 (First year graduate student’s dream) What is s 13 ???? s 13 = − s 22 . What is s α if α is not a partition? s 154 = s 433 14 / 41

  27. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 (First year graduate student’s dream) What is s 13 ???? s 13 = − s 22 . What is s α if α is not a partition? s 154 = s 433 ( − 1) 2 s 433 s 154 = 14 / 41

  28. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 (First year graduate student’s dream) What is s 13 ???? s 13 = − s 22 . What is s α if α is not a partition? s 154 = s 433 ( − 1) 2 s 433 s 154 = o o o o o o o o o o 14 / 41

  29. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) Schur expansion of F 31 + F 22 + F 13 ? F 31 + F 22 + F 13 = s 31 + s 22 + s 13 (First year graduate student’s dream) What is s 13 ???? s 13 = − s 22 . What is s α if α is not a partition? s 154 = s 433 ( − 1) 2 s 433 s 154 = o o o o o o o o o o o o o o o o o o o o 14 / 41

  30. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) s 12 = 0 15 / 41

  31. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) s 12 = 0 o o o 15 / 41

  32. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) s 13 = − s 22 o o o o o o o o 16 / 41

  33. Quasisymmetric to symmetric (Egge-Loehr-Warrington, Garsia) s 13 = − s 22 o o o o o o o o F 31 + F 22 + F 13 = s 31 + s 22 + s 13 = s 31 + s 22 − s 22 = s 31 16 / 41

  34. Moral of this talk 17 / 41

  35. 18 / 41

  36. Moral Function hard Schur Symmetric Functions Quasisymmetric Functions 19 / 41

  37. (Counterexample to the triangle inequality) Symmetric Functions Function hard Schur E-L-W,G easy (easy) Quasisymmetric Functions Fundamental 20 / 41

  38. (Counterexample to the triangle inequality) Symmetric Functions Function hard Schur E-L-W,G easy (easy) Quasisymmetric Functions Fundamental Side effects may include hallucinations, such as an apparent loss of Schur positivity. 20 / 41

  39. Prism of bases Hall-Littlewood algebraic Tournament matrices Symmetric Functions (Carbonara) (Macdonald) Schur monomial Hivert Quasisymmetric Functions Fundamental Monomial 21 / 41

  40. Prism of bases Hall-Littlewood charge Symmetric Functions (Lascoux-Sch¨ utzenberger) Schur monomial Hivert Quasisymmetric Functions Fundamental Monomial 22 / 41

  41. New Transition matrices (LSW) Hall-Littlewood Symmetric Functions Schur monomial Hivert Quasisymmetric Functions Fundamental Monomial 23 / 41

  42. Hall-Littlewood to Fundamental Hall-Littlewood Symmetric Functions Schur monomial Hivert Quasisymmetric Functions Fundamental Monomial 24 / 41

  43. Hall-Littlewood polynomials The P λ ( x ; t ) satisfy: P λ ( x ; 0) = s λ ( x ) P λ ( x ; 1) = m λ ( x ) 25 / 41

  44. Hall-Littlewood polynomials The P λ ( x ; t ) satisfy: P λ ( x ; 0) = s λ ( x ) P λ ( x ; 1) = m λ ( x ) Theorem (Loehr-S.-Warrington) � sgn( S ∗ ) t tstat( S ∗ ) F Asc ′ ( S ∗ ) ( x ) . P λ/µ ( x ; t ) = S ∗ ∈ SYT ∗ ( λ/µ ) 25 / 41

  45. Hall-Littlewood polynomials The P λ ( x ; t ) satisfy: P λ ( x ; 0) = s λ ( x ) P λ ( x ; 1) = m λ ( x ) Theorem (Loehr-S.-Warrington) � sgn( S ∗ ) t tstat( S ∗ ) F Asc ′ ( S ∗ ) ( x ) . P λ/µ ( x ; t ) = S ∗ ∈ SYT ∗ ( λ/µ ) t 2 F 111 . P 21 ( t ) = F 21 − tF 111 + F 12 − 3 3 2 2 1 2 1 2 ∗ 1 3 1 3 ∗ 25 / 41

  46. Starred tableaux λ = 65211 11 10 S ∗ = 5 12 6 7 ∗ 13 ∗ 14 4 3 8 ∗ 9 15 1 2 ∗ 26 / 41

  47. Starred tableaux λ = 65211 11 10 S ∗ = 5 12 6 7 ∗ 13 ∗ 14 4 3 8 ∗ 9 15 1 2 ∗ Ascents: ◮ When i + 1 is above i (or i ∗ ). 26 / 41

  48. Starred tableaux λ = 65211 11 10 S ∗ = 5 12 6 7 ∗ 13 ∗ 14 4 3 8 ∗ 9 15 1 2 ∗ Ascents: ◮ When i + 1 is above i (or i ∗ ). ◮ When ( i + 1) ∗ is in the next column to the right of i (or i ∗ ). 26 / 41

  49. Starred tableaux λ = 65211 11 10 S ∗ = 5 12 6 7 ∗ 13 ∗ 14 4 3 8 ∗ 9 15 1 2 ∗ Ascents: ◮ When i + 1 is above i (or i ∗ ). ◮ When ( i + 1) ∗ is in the next column to the right of i (or i ∗ ). Asc( S ∗ ) = { 3 , 4 , 6 , 7 , 9 , 10 , 14 } 26 / 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend