qsym over sym has a stable basis
play

QSym over Sym has a stable basis Aaron Lauve and Sarah Mason 3 - PowerPoint PPT Presentation

Overview Symmetric and quasisymmetric polynomials The Bergeron-Reutenauer basis QSym over Sym has a stable basis Aaron Lauve and Sarah Mason 3 August 2010 Aaron Lauve and Sarah Mason QSym/Sym Overview Symmetric and quasisymmetric


  1. Overview Symmetric and quasisymmetric polynomials The Bergeron-Reutenauer basis QSym over Sym has a stable basis Aaron Lauve and Sarah Mason 3 August 2010 Aaron Lauve and Sarah Mason QSym/Sym

  2. Overview Symmetric and quasisymmetric polynomials The Bergeron-Reutenauer basis Sym n ֒ → Q [ x ] free module coinvariant space Q [ x ] / Sym n of dimension n ! Aaron Lauve and Sarah Mason QSym/Sym

  3. Overview Symmetric and quasisymmetric polynomials The Bergeron-Reutenauer basis Sym n ֒ → Q [ x ] free module coinvariant space Q [ x ] / Sym n of dimension n ! → QSym n ֒ → Q [ x ] Sym n ֒ Aaron Lauve and Sarah Mason QSym/Sym

  4. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Symmetric polynomials in n variables f ( x 1 , x 2 , . . . , x n ) ∈ Sym n ⇐ ⇒ π f = f ∀ π ∈ S n Example ( Sym 3 ) x 1 x 2 + x 1 x 3 + x 2 x 3 x 2 1 x 2 + x 2 1 x 3 + x 2 2 x 3 x 2 1 x 2 + x 1 x 2 2 x 2 1 x 2 + x 2 1 x 3 + x 2 2 x 3 + x 1 x 2 2 + x 1 x 2 3 + x 2 x 2 3 x 3 1 x 2 + x 2 3 Aaron Lauve and Sarah Mason QSym/Sym

  5. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Partitions A partition of a positive integer n is a weakly decreasing sequence of positive integers which sum to n . Example: 13 = 5 + 3 + 3 + 2 λ = (5 , 3 , 3 , 2) Aaron Lauve and Sarah Mason QSym/Sym

  6. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Semi-standard Young tableaux (SSYT) A semi-standard Young tableau is a filling of the entries in a partition diagram with positive integers so that the rows are weakly increasing from left to right and the columns are strictly increasing from top to bottom. The weight of a SSYT T , denoted x T is the i x # of i ′ s product � . i Example: T = 1 2 2 4 7 3 4 7 4 6 9 7 8 x T = x 1 x 2 2 x 3 x 3 4 x 6 x 3 7 x 8 x 9 Aaron Lauve and Sarah Mason QSym/Sym

  7. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Schur function basis The Schur function s λ is the polynomial obtained by summing the weights of all SSYT of shape λ : � x T s λ ( x 1 , x 2 , . . . , x n ) = T ∈ SSYT ( λ ) s 2 , 1 ( x 1 , x 2 , x 3 ) = 1 1 1 1 1 2 1 2 1 3 1 3 2 2 2 3 2 3 2 3 2 3 3 3 x 2 1 x 2 + x 2 1 x 3 + x 1 x 2 + x 1 x 2 3 + x 2 2 x 3 + x 2 x 2 2 + 2 x 1 x 2 x 3 3 Aaron Lauve and Sarah Mason QSym/Sym

  8. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Quasiymmetric polynomials in n variables f ( x 1 , x 2 , . . . , x n ) ∈ QSym n ⇐ ⇒ ( ∀ i 1 < i 2 < . . . < i k ) coeff of x a 1 1 x a 2 2 . . . x a k k = coeff of x a 1 i 1 x a 2 i 2 · · · x a k i k Example ( QSym 3 ) x 1 x 2 + x 1 x 3 + x 2 x 3 x 2 1 x 2 + x 2 1 x 3 + x 2 2 x 3 x 2 1 x 2 + x 1 x 2 2 x 2 1 x 2 + x 2 1 x 3 + x 2 2 x 3 + x 1 x 2 2 + x 1 x 2 3 + x 2 x 2 3 x 3 1 x 2 + x 2 3 Aaron Lauve and Sarah Mason QSym/Sym

  9. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Compositions A composition of a positive integer n is a sequence of positive integers which sum to n . Example: 14 = 2 + 4 + 1 + 4 + 3 α = (2 , 4 , 1 , 4 , 3) Aaron Lauve and Sarah Mason QSym/Sym

  10. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Composition tableau (CT) A filling, F , of the cells of a composition such that: 1 The leftmost column entries strictly increase top to bottom. 2 The row entries weakly decrease from L to R. 3 The entries satisfy the triple rule: for i < j , ( F ( j , k ) � = 0 and F ( j , k ) ≥ F ( i , k )) = ⇒ F ( j , k ) > F ( i , k − 1) . F= 1 1 α = (2 , 4 , 1 , 4 , 3) 3 2 2 2 x F = x 3 1 x 3 2 x 3 x 2 4 x 3 6 x 2 4 7 6 6 6 1 7 7 4 Aaron Lauve and Sarah Mason QSym/Sym

  11. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Quasisymmetric Schur function basis � x T , QS α = T ∈ CT ( α ) where CT ( α ) is the set of all composition tableau of shape α . Aaron Lauve and Sarah Mason QSym/Sym

  12. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures QS 3 , 1 , 2 ( x 1 , x 2 , x 3 , x 4 ) = 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 3 4 4 4 4 x 3 1 x 2 x 2 x 3 + x 3 1 x 2 x 2 x 3 1 x 3 x 2 + 1 x 2 x 3 x 4 + 3 4 4 2 1 1 2 2 1 2 2 2 3 3 3 4 4 4 4 4 4 + x 2 1 x 2 x 3 x 2 + x 1 x 2 2 x 3 x 2 + x 3 2 x 3 x 2 4 4 4 Aaron Lauve and Sarah Mason QSym/Sym

  13. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures The quasisymmetric Schur functions: form a basis for all quasisymmetric functions � refine the Schur functions in a natural way ( s λ = QS α ) α = λ ˜ decompose into positive sums of Gessel’s fundamental quasisymemtric functions enjoy many nice combinatorial properties, including a Littlewood-Richardson style multiplication rule Aaron Lauve and Sarah Mason QSym/Sym

  14. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures � QS α × s λ = QS β β A few definitions: contre-lattice A word is contre-lattice if the number of i ′ s in any prefix of the resulting word is greater than or equal to the number of ( i − 1)’s in the prefix for all i . Example: 3 2 3 1 2 3 3 1 2, 3 2 1 2 1 Aaron Lauve and Sarah Mason QSym/Sym

  15. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures β/α (def by example) β = (3 , 1 , 4 , 2) α = (3 , 2)                     � � � � � � β/α = , ,         � � � � �           � � � � Aaron Lauve and Sarah Mason QSym/Sym

  16. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures reading word The column reading word ( w col ) of a skew diagram is the word obtained by reading the entries in the available cells down columns, working from right to left. Littlewood-Richardson composition tableau (LRCT) A Littlewood-Richardson composition tableau (LRCT) is a composition tableau filling of a skew composition diagram with positive integers so that the column reading word is contre-lattice. Aaron Lauve and Sarah Mason QSym/Sym

  17. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Littlewood-Richardson composition tableaux (LRCT) 7 7 2 10 10 10 1 6 6 6 3 9 1 3 1 8 8 8 8 2 4 4 4 7 7 2 6 6 6 3 3 3 LRCT of shape LRCT of shape , (3,4,2,3)/(2,3,3) (4 , 2 , 5 , 3 , 6) / (3 , 1 , 4 , 2 , 3) w col = 3213 w col = 3231321 Aaron Lauve and Sarah Mason QSym/Sym

  18. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Theorem (Haglund, Luoto, M, van Willigenburg 08) c β � QS α · s λ = α,λ QS β , β where c β α,λ is the number of (LRCT) of shape in β/α with content λ ∗ . Example (3 variables): QS 1 , 2 · s 1 , 1 = QS 2 , 3 + QS 1 , 1 , 3 + QS 1 , 3 , 1 5 1 6 5 (2 , 1) 4 4 2 1 4 4 2 4 4 2 1 Aaron Lauve and Sarah Mason QSym/Sym

  19. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Sym n ֒ → Q [ x 1 , . . . , x n ] = Q [ x ] A classical result The following are equivalent: 1 Sym n is a polynomial ring, generated by the elementary symmetric polynomials E n = { e 1 ( x ) , . . . , e n ( x ) } ; 2 the ring Q [ x ] is a free Sym n -module; 3 the coinvariant space Q [ x ] S n = Q [ x ] / ( E n ) has dimension n ! and is isomorphic to the regular representation of S n . Aaron Lauve and Sarah Mason QSym/Sym

  20. Overview Symmetric polynomials Symmetric and quasisymmetric polynomials Quasisymmetric polynomials The Bergeron-Reutenauer basis The Bergeron-Reutenauer conjectures Sym n ֒ → QSym n ֒ → Q [ x ] Bergeron-Reutenauer conjectures The ring QSym n is a free module over Sym n ; the dimension of the coinvariant space QSym n / ( E n ) is n !; the set of pure and inverting compositions form the indexing set for a basis for QSym n / ( E n ). Aaron Lauve and Sarah Mason QSym/Sym

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend