ambitwistor strings and the scattering equations at one
play

Ambitwistor strings and the scattering equations at one loop Lionel - PowerPoint PPT Presentation

Ambitwistor strings and the scattering equations at one loop Lionel Mason The Mathematical Institute, Oxford lmason@maths.ox.ac.uk IHES 15 October 2015 With David Skinner. arxiv:1311.2564, and collaborations with Tim Adamo, Eduardo Casali,


  1. Ambitwistor strings and the scattering equations at one loop Lionel Mason The Mathematical Institute, Oxford lmason@maths.ox.ac.uk IHES 15 October 2015 With David Skinner. arxiv:1311.2564, and collaborations with Tim Adamo, Eduardo Casali, Yvonne Geyer, Arthur Lipstein, Ricardo Monteiro, Kai Roehrig, & Piotr Tourkine, 1312.3828, 1404.6219, 1405.5122, 1406.1462, 1506.08771, 1507.00321. [Cf. also Cachazo, He, Yuan arxiv:1306.2962, 1306.6575, 1307.2199, 1309.0885, 1412.3479]

  2. Ambitwistors Ambitwistor spaces: spaces of complex null geodesics. • Extends Penrose/Ward’s gravity/Yang-Mills twistor constructions to non-self-dual fields. • Yang-Mills Witten and Isenberg, et. al. 1978, 1985 . • Conformal and Einstein gravity LeBrun [1983,1991] Baston & M. [1987] . Ambitwistor Strings : • Tree S-Matrices in all dimensions for gravity, YM etc. [CHY] • From strings in ambitwistor space [M. & Skinner 1311.2564] • New models for Einstein-YM, DBI, BI, NLS, etc. [Casali, Geyer, M., Monteiro, Roehrig 1506.08771] . • Loop integrands from the Riemann sphere [Geyer, M., Monteiro, Tourkine, 1507.00321]. Provide string theories at α ′ = 0 for field theory amplitudes.

  3. Amplitudes from Feynman diagrams Amplitudes are realized as sums of Feynman integrals. Consider the five-gluon tree-level amplitude of QCD. Enters in calculation of multi-jet production at hadron colliders. Described by following Feynman diagrams: + + + · · · If you follow the textbooks you discover a disgusting mess. Trees ↔ classical, loops ↔ quantum.

  4. Need for new ideas Result of a brute force calculation: k 1 · k 4 ε 2 · k 1 ε 1 · ε 3 ε 4 · ε 5

  5. The scattering equations Take n null momenta k i ∈ R d , i = 1 , . . . , n , k 2 i = 0, � i k i = 0, • define P : CP 1 → C d σ 2 σ 1 n k i σ n � σ, σ i ∈ CP 1 P ( σ ) := , . σ − σ i i = 1 • Solve for σ i ∈ CP 1 with the n scattering equations [Fairlie 197?] n k i · k j � P 2 � � = k i · P ( σ i ) = = 0 . Res σ i σ i − σ j j = 1 ⇒ P 2 = 0 ∀ σ . • For Mobius invariance ⇒ P ∈ C d ⊗ K , K = Ω 1 , 0 CP 1 • There are ( n − 3 )! solutions. Arise in large α ′ strings [Gross-Mende 1988] & twistor-strings [Roiban, Spradlin, Volovich, Witten 2004] .

  6. Amplitude formulae for massless theories. Proposition (Cachazo, He, Yuan 2013,2014) Tree-level massless amplitudes in d-dims are integrals/sums �� � � i ¯ I l I r � δ ( k i · P ( σ i )) M n = δ d k i Vol SL ( 2 , C ) × C 3 ( CP 1 ) n i where I l / r = I l / r ( ǫ l / r , k i , σ i ) depend on the theory. i • polarizations ǫ l i for spin 1, ǫ l i ⊗ ǫ r i for spin-2 ( k i · ǫ i = 0 . . . ). � A � C • Introduce skew 2 n × 2 n matrices M = , − C t B A ij = k i · k j ǫ i · ǫ j C ij = k i · ǫ j , , B ij = , , for i � = j σ i − σ j σ i − σ j σ i − σ j and A ii = B ii = 0, C ii = ǫ i · P ( σ i ) . • For YM, I l = Pf ′ ( M ) , I r = � 1 σ i − σ i − 1 . i • For GR I l = Pf ′ ( M l ) , I r = Pf ′ ( M r ) .

  7. More CHY formulae: “compactify” Gravity BI compactify compactify “compactify” squeeze EM DBI generalize single trace “compactify” EYM YM NLSM compactify φ 4 squeeze YMS corollary generalize gen. YMS Figure: Theories studied by CHY and operations relating them.

  8. Chiral bosonic strings at α ′ = 0 Bosonic ambitwistor string action: • Σ Riemann surface, coordinate σ ∈ C • Complexify space-time ( M , g ) , coords X ∈ C d , g hol. • ( X , P ) : Σ → T ∗ M , P ∈ K , holomorphic 1-forms on Σ . � ∂ X µ − e P 2 / 2 . P µ ¯ S B = Σ Underlying geometry: • e enforces P 2 = 0, • P 2 generates gauge freedom: δ ( X , P , e ) = ( α P , 0 , 2 ¯ ∂α ) . So target is A = T ∗ M | P 2 = 0 / { gauge } . This is Ambitwistor space , space of complexified light rays.

  9. The geometry of the space of light rays Ambitwistor space A is space of complexified light rays. • Light rays primary, events determined by lightcones X ⊂ A of light rays incident with x . • Space-time M = space of such X ⊂ A . Space-time Twistor Space X � x � X x Z Space-time geometry is encoded in complex structure of A . Theorem (LeBrun 1983 following Penrose 1976) Complex structure of A determines ( M , [ g ]) . Correspondence stable under deformations of P A that preserve θ = P µ d X µ .

  10. Amplitudes from ambitwistor strings Quantize bosonic ambitwistor string: • ( X , P ) : Σ → T ∗ M , � e ∂ ) X µ − e P 2 / 2 . P µ (¯ ∂ + ˜ S B = Σ • Gauge fix ˜ e = e = 0, ❀ ghosts & BRST Q • Introduce vertex operators V i ↔ field perturbations. Amplitudes are computed as correlators of vertex ops M n = � V 1 . . . V n � For gravity add type II worldsheet susy S Ψ 1 + S Ψ 2 where � ∂ Ψ µ + χ P · Ψ . Ψ µ ¯ S Ψ = Σ

  11. From deformations of A to the scattering equations � Gravitons ↔ vertex operators V i = def’m of action δ S = Σ δθ . • θ determines complex structure on P A via θ ∧ d θ d − 2 . So: • Deformations of complex structure ↔ [ δθ ] ∈ H 1 ∂ ( P A , L ) . ¯ Proposition For perturbation δ g µν = e ik · x ǫ µ ǫ ν of flat space-time δθ = ¯ δ ( k · P ) e ik · X ( ǫ · P ) 2 Proof: Penrose transform. Ambitwistor repn ⇒ ¯ δ ( k · P ) ⇒ scattering equs. Proposition CHY formulae for massless tree amplitudes e.g. YM & gravity arise from appropriate choices of worldsheet matter.

  12. Evaluation of amplitude • Take e ik i · X ( σ i ) factors into action to give S = 1 � P · ¯ � ∂ X + 2 π ik · X ( σ i ) . 2 π Σ i • Gives field equations ¯ ∂ X = 0 and, ¯ � ik δ 2 ( σ − σ i ) . ∂ P = 2 π i k i • Solutions X ( σ ) = X = const. , P ( σ ) = � σ − σ i d σ . i Thus path-integral reduces to �� � � i ( ǫ i · P ( σ i )) 2 ¯ � δ ( k i · P ) M n = δ d k i Vol G ( CP 1 ) n − 3 i We see P ( σ ) appearing and scattering equations. M R + R 3 . Unfortunately: amplitudes for S ∼ �

  13. Evaluation of amplitude • Take e ik i · X ( σ i ) factors into action to give S = 1 � P · ¯ � ∂ X + 2 π ik · X ( σ i ) . 2 π Σ i • Gives field equations ¯ ∂ X = 0 and, ¯ � ik δ 2 ( σ − σ i ) . ∂ P = 2 π i k i • Solutions X ( σ ) = X = const. , P ( σ ) = � σ − σ i d σ . i Thus path-integral reduces to �� � � i ( ǫ i · P ( σ i )) 2 ¯ � δ ( k i · P ) M n = δ d k i Vol G ( CP 1 ) n − 3 i We see P ( σ ) appearing and scattering equations. M R + R 3 . Unfortunately: amplitudes for S ∼ �

  14. Worldsheet matter • Decorate null geodesics with spin vectors, vectors for internal degrees of freedom & other holmorphic CFTs. • Take S = S B + S l + S r where S l , S r are some worldsheet matter CFTs. • Total vertex operators given by v l v r ¯ δ ( k · P ) e ik · X with v l , v r worldsheet currents from S l , S r resp.. • Amplitudes become �� � � ′ ¯ I l I r � δ ( k i · P ) M n = δ d i k i Vol Gauge ( CP 1 ) n i where I l , I r are worldsheet correlators of v l s, v r s resp.. • In good situations, Q -invariance and discrete symmetries (GSO) rule out unwanted vertex operators.

  15. Worldsheet matter models • Worldsheet SUSY: Let Ψ µ ∈ K 1 / 2 , spin 1/2 fermions on Σ , � g µν Ψ µ ¯ ∂ Ψ ν − χ P µ Ψ µ S Ψ = Replace v = ǫ · P by v = ǫ · P + ǫ · Ψ k · Ψ (or u = δ ( γ ) ǫ · Ψ ). Worldsheet correlator I l / r = � u 1 u 2 v 3 . . . v n � = Pf ′ ( M ) . • Free fermions and current algebras: Free ‘real’ Fermions ρ a ∈ C m ⊗ K 1 / 2 � δ ab ρ a ¯ ∂ρ b , S ρ = a = 1 , . . . m , Σ With Lie alg structure const f abc , set v = t a f abc ρ b ρ c . Correlators ❀ ‘Parke-Taylor’ + unwanted multi-trace terms tr ( t 1 . . . t n ) � v 1 . . . v n � = + . . . σ 12 σ 23 . . . σ n 1 where σ ij = σ i − σ j .

  16. Comb system [Casali-Skinner] ρ a , ρ a ∈ g ⊗ K 1 / 2 , bosons q a , y a ∈ g ⊗ K 1 / 2 Use fermions ˜ � [˜ � � ρ, ρ ] ∂ρ a + q a ¯ ∂ y a + χ tr ρ ρ a ¯ S CS = ˜ + [ q , y ] . 2 Σ • Gauge fix χ = 0 ❀ ghosts ( β, γ ) ❀ two fixed vertex operators to end chain of structure contants ‘comb’. • Vertex ops: u = δ ( γ ) t · ρ , u = δ ( γ ) t · ˜ ˜ ρ , (fixed) ˜ v = t · [ ρ, ρ ] , v = t · ([˜ ρ, ρ ] + [ q , y ]) . • To be nontrivial, correlator must have just one untilded VO v n � = C ( 1 , . . . , n ) := tr ( t 1 [ t 2 , [ t 3 , . . . [ t n − 1 , t n ] . . . ]) � u 1 ˜ u 2 ˜ v 3 . . . ˜ . σ 12 . . . σ n 1

  17. The 2013 CHY formulae & ambitwistor models Above lead essentially to original models & formulae: • ( S l , S r ) = ( S ˜ Ψ , S Ψ ) ❀ type II gravity, • ( S l , S r ) = ( S CS , S Ψ ) ❀ heterotic with YM, • ( S l , S r ) = ( S CS , S CS ) ❀ bi-adjoint scalar. The latter two come with unphysical gravity. S CS improves on current algebras in avoiding multi-trace terms and all models critical in 10d.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend