unimodality of q eulerian polynomials and q p eulerian
play

Unimodality of q -Eulerian polynomials and q , p -Eulerian - PowerPoint PPT Presentation

Unimodality of q -Eulerian polynomials and q , p -Eulerian polynomials Michelle Wachs University of Miami Joint work with John Shareshian and with Anthony Henderson Eulerian numbers and Eulerian polynomials Eulerian numbers: a n , j := |{


  1. Unimodality of q -Eulerian polynomials and q , p -Eulerian polynomials Michelle Wachs University of Miami Joint work with John Shareshian and with Anthony Henderson

  2. Eulerian numbers and Eulerian polynomials Eulerian numbers: a n , j := |{ σ ∈ S n : des ( σ ) = j }| = |{ σ ∈ S n : exc ( σ ) = j }| , des ( σ ) = { i ∈ [ n − 1] : σ ( i ) > σ ( i + 1) } exc ( σ ) = { i ∈ [ n − 1] : σ ( i ) > i } Eulerian polynomials: n − 1 a n , j t j = t des ( σ ) = � � � t exc ( σ ) A n ( t ) := j =0 σ ∈ S n σ ∈ S n

  3. Eulerian numbers and Eulerian polynomials Eulerian numbers: a n , j := |{ σ ∈ S n : des ( σ ) = j }| = |{ σ ∈ S n : exc ( σ ) = j }| , des ( σ ) = { i ∈ [ n − 1] : σ ( i ) > σ ( i + 1) } exc ( σ ) = { i ∈ [ n − 1] : σ ( i ) > i } Eulerian polynomials: n − 1 a n , j t j = t des ( σ ) = � � � t exc ( σ ) A n ( t ) := j =0 σ ∈ S n σ ∈ S n Euler’s exponential generating function formula: A n ( t ) z n 1 − t � n ! = e z ( t − 1) − t n ≥ 0

  4. Eulerian numbers and Eulerian polynomials Eulerian numbers: a n , j := |{ σ ∈ S n : des ( σ ) = j }| = |{ σ ∈ S n : exc ( σ ) = j }| , des ( σ ) = { i ∈ [ n − 1] : σ ( i ) > σ ( i + 1) } exc ( σ ) = { i ∈ [ n − 1] : σ ( i ) > i } Eulerian polynomials: n − 1 a n , j t j = t des ( σ ) = � � � t exc ( σ ) A n ( t ) := j =0 σ ∈ S n σ ∈ S n Euler’s exponential generating function formula: A n ( t ) z n e z ( t − 1) − t = (1 − t ) e t 1 − t � n ! = e tz − te z n ≥ 0

  5. Symmetry and Unimodality Eulerian numbers a n , j n \ j 0 1 2 3 4 1 1 2 1 1 3 1 4 1 4 1 11 11 1 5 1 26 66 26 1

  6. Symmetry and Unimodality Eulerian numbers a n , j n \ j 0 1 2 3 4 1 1 2 1 1 3 1 4 1 4 1 11 11 1 5 1 26 66 26 1 A stronger property: γ -positivity ⌊ n − 1 2 ⌋ � γ n , i t i (1 + t ) n − 1 − 2 i , A n ( t ) = γ n , i ∈ N i =0 Foata & Sh¨ utzenberger (1970): γ n , i = |{ σ ∈ S n | σ 0 has no double descents & des ( σ ) = i }|

  7. Geometric interpretation ( a n , 0 , a n , 1 , . . . , a n , n − 1 ) is the h-vector of the barycentric subdivision of the ( n − 1)-simplex (type A Coxeter complex). Stanley (1980): The h -vector of every simplicial polytope is unimodal (and symmetric). The γ vector of a d -dimensional simplicial polytope ∆ is defined by ⌊ d 2 ⌋ d h i (∆) t i = � � γ i (∆) t i (1 + t ) n − 1 − 2 i i =0 i =0

  8. Geometric interpretation ( a n , 0 , a n , 1 , . . . , a n , n − 1 ) is the h-vector of the barycentric subdivision of the ( n − 1)-simplex (type A Coxeter complex). Stanley (1980): The h -vector of every simplicial polytope is unimodal (and symmetric). The γ vector of a d -dimensional simplicial polytope ∆ is defined by ⌊ d 2 ⌋ d h i (∆) t i = � � γ i (∆) t i (1 + t ) n − 1 − 2 i i =0 i =0 Gal’s Conjecture (2005): The γ vector of every flag homology sphere is nonnegative, i.e. γ i (∆) ≥ 0 for all i .

  9. Geometric interpretation ( a n , 0 , a n , 1 , . . . , a n , n − 1 ) is the h-vector of the barycentric subdivision of the ( n − 1)-simplex (type A Coxeter complex). Stanley (1980): The h -vector of every simplicial polytope is unimodal (and symmetric). The γ vector of a d -dimensional simplicial polytope ∆ is defined by ⌊ d 2 ⌋ d h i (∆) t i = � � γ i (∆) t i (1 + t ) n − 1 − 2 i i =0 i =0 Gal’s Conjecture (2005): The γ vector of every flag homology sphere is nonnegative, i.e. γ i (∆) ≥ 0 for all i . Peterson, Stembridge: true for all Coxeter complexes

  10. q -Eulerian numbers and q -Eulerian polynomials q -Eulerian numbers � q maj ( σ ) − j a n , j ( q ) := σ ∈ S n exc ( σ ) = j q -Eulerian polynomials: n − 1 a n , j ( q ) t j = � � q maj ( σ ) − exc ( σ ) t exc ( σ ) A n ( q , t ) := j =0 σ ∈ S n

  11. q -Eulerian numbers and q -Eulerian polynomials q -Eulerian numbers � q maj ( σ ) − j a n , j ( q ) := σ ∈ S n exc ( σ ) = j q -Eulerian polynomials: n − 1 a n , j ( q ) t j = � � q maj ( σ ) − exc ( σ ) t exc ( σ ) A n ( q , t ) := j =0 σ ∈ S n Shareshian and MW (2005): A n ( q , t ) z n (1 − t ) exp q ( z ) � = [ n ] q ! exp q ( tz ) − t exp q ( z ) n ≥ 0 Proof: We specialize a symmetric function analog involving the Eulerian quasisymmetric functions Q n , j .

  12. Symmetry and Unimodality of A n ( q , t ) n \ j 0 1 2 3 4 1 1 2 1 1 2 + q + q 2 3 1 1 3 + 2 q + 3 q 2 + 2 q 3 + q 4 3 + 2 q + 3 q 2 + 2 q 3 + q 4 4 1 1 4 + 3 q + 5 q 2 + ... 6 + 6 q + 11 q 2 + ... 4 + 3 q + 5 q 2 + ... 5 1 1

  13. Symmetry and Unimodality of A n ( q , t ) n \ j 0 1 2 3 4 1 1 2 1 1 2 + q + q 2 3 1 1 3 + 2 q + 3 q 2 + 2 q 3 + q 4 3 + 2 q + 3 q 2 + 2 q 3 + q 4 4 1 1 4 + 3 q + 5 q 2 + ... 6 + 6 q + 11 q 2 + ... 4 + 3 q + 5 q 2 + ... 5 1 1 ⌊ n − 1 2 ⌋ � γ n , i ( q ) t i (1 + t ) n − 1 − 2 i A n ( q , t ) = i =0

  14. Symmetry and Unimodality of A n ( q , t ) n \ j 0 1 2 3 4 1 1 2 1 1 2 + q + q 2 3 1 1 3 + 2 q + 3 q 2 + 2 q 3 + q 4 3 + 2 q + 3 q 2 + 2 q 3 + q 4 4 1 1 4 + 3 q + 5 q 2 + ... 6 + 6 q + 11 q 2 + ... 4 + 3 q + 5 q 2 + ... 5 1 1 ⌊ n − 1 2 ⌋ � γ n , i ( q ) t i (1 + t ) n − 1 − 2 i A n ( q , t ) = i =0 Shareshian and MW: q maj ( σ − 1 ) ∈ N [ q ] � γ n , i ( q ) = σ ∈ DD n , i where DD n , i := { σ ∈ S n | σ 0 has no double descents & des ( σ ) = i }

  15. Eulerian quasisymmetric functions - Shareshian and MW For σ ∈ S n , let ¯ σ be obtained by placing bars above each excedance. ¯ 5¯ 314¯ 62 View ¯ σ as a word over ordered alphabet { ¯ 1 < ¯ 2 < · · · < ¯ n < 1 < 2 < · · · < n } . Define DEX ( σ ) := DES (¯ σ ) DEX (531462) = DES (¯ 5 . ¯ 314 . ¯ 62) = { 1 , 4 }

  16. Eulerian quasisymmetric functions - Shareshian and MW For σ ∈ S n , let ¯ σ be obtained by placing bars above each excedance. ¯ 5¯ 314¯ 62 View ¯ σ as a word over ordered alphabet { ¯ 1 < ¯ 2 < · · · < ¯ n < 1 < 2 < · · · < n } . Define DEX ( σ ) := DES (¯ σ ) DEX (531462) = DES (¯ 5 . ¯ 314 . ¯ 62) = { 1 , 4 } We prove � i ∈ DEX ( σ ) i = maj ( σ ) − exc ( σ ).

  17. Eulerian quasisymmetric functions - Shareshian and MW For σ ∈ S n , let ¯ σ be obtained by placing bars above each excedance. ¯ 5¯ 314¯ 62 View ¯ σ as a word over ordered alphabet { ¯ 1 < ¯ 2 < · · · < ¯ n < 1 < 2 < · · · < n } . Define DEX ( σ ) := DES (¯ σ ) DEX (531462) = DES (¯ 5 . ¯ 314 . ¯ 62) = { 1 , 4 } We prove � i ∈ DEX ( σ ) i = maj ( σ ) − exc ( σ ). maj (5 . 3 . 146 . 2) − exc (531462) = 8 − 3 = 5

  18. Eulerian quasisymmetric functions - Shareshian and MW (2005) For all j ∈ { 0 , 1 , . . . , n − 1 } , define the Eulerian quasisymmetric function � Q n , j := F DEX ( σ ) , σ ∈ S n exc ( σ ) = j where for S ⊆ [ n − 1], � F S := F S ( x 1 , x 2 , . . . ) := x i 1 x i 2 . . . x i n i 1 ≥ i 2 ≥ · · · ≥ i n i k > i k +1 ∀ k ∈ S

  19. Eulerian quasisymmetric functions - Shareshian and MW (2005) For all j ∈ { 0 , 1 , . . . , n − 1 } , define the Eulerian quasisymmetric function � Q n , j := F DEX ( σ ) , σ ∈ S n exc ( σ ) = j where for S ⊆ [ n − 1], � F S := F S ( x 1 , x 2 , . . . ) := x i 1 x i 2 . . . x i n i 1 ≥ i 2 ≥ · · · ≥ i n i k > i k +1 ∀ k ∈ S Stable principal specialization: p s ( F S ) := F S ( q 0 , q 1 , q 2 , . . . ) = ( q ; q ) − 1 P i ∈ S i n q where ( p ; q ) n := (1 − p )(1 − pq ) . . . (1 − pq n − 1 )

  20. Symmetric function analog of Euler’s formula � p s ( Q n , j ) = ( q ; q ) − 1 q maj ( σ ) − exc ( σ ) n σ ∈ S n exc ( σ ) = j

  21. Symmetric function analog of Euler’s formula � p s ( Q n , j ) = ( q ; q ) − 1 q maj ( σ ) − exc ( σ ) n σ ∈ S n exc ( σ ) = j Shareshian and MW (2006): n − 1 (1 − t ) H ( z ) Q n , j t j z n = � � H ( tz ) − tH ( z ) , n ≥ 0 j =0 n ≥ 0 h n z n . where H ( z ) = �

  22. Symmetric function analog of Euler’s formula � p s ( Q n , j ) = ( q ; q ) − 1 q maj ( σ ) − exc ( σ ) n σ ∈ S n exc ( σ ) = j Shareshian and MW (2006): n − 1 (1 − t ) H ( z ) Q n , j t j z n = � � H ( tz ) − tH ( z ) , n ≥ 0 j =0 n ≥ 0 h n z n . where H ( z ) = � x i �→ q i − 1 and z �→ z (1 − q ) = ⇒ A n ( q , t ) z n (1 − t ) exp q ( z ) � = [ n ] q ! exp q ( tz ) − t exp q ( z ) n ≥ 0

  23. Another occurrence of this symmetric function Gessel: (1 − t ) H ( z ) x w t i (1 + t ) n − 1 − 2 i = � � z n 1 + H ( tz ) − tH ( z ) n ≥ 1 w ∈ DD n , i ( P ) where x w := x w 1 x w 2 . . . x w n and DD n , i ( P ) := { w ∈ P n | w 0 has no double descents & des ( w ) = i } 779 . 1558 . 25 ∈ DD 9 , 2 ( P )

  24. Another occurrence of this symmetric function Gessel: (1 − t ) H ( z ) x w t i (1 + t ) n − 1 − 2 i = � � z n 1 + H ( tz ) − tH ( z ) n ≥ 1 w ∈ DD n , i ( P ) where x w := x w 1 x w 2 . . . x w n and DD n , i ( P ) := { w ∈ P n | w 0 has no double descents & des ( w ) = i } 779 . 1558 . 25 ∈ DD 9 , 2 ( P ) 2 5 1 5 5 8 7 7 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend