robust algorithms for chebyshev polynomials and related
play

Robust Algorithms for Chebyshev Polynomials and Related - PowerPoint PPT Presentation

Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Robust Algorithms for Chebyshev Polynomials and Related Approximations Miroslav Vl cek vlcek@fd.cvut.cz Department of


  1. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Robust Algorithms for Chebyshev Polynomials and Related Approximations Miroslav Vlˇ cek vlcek@fd.cvut.cz Department of Applied Mathematics, Czech Technical University in Prague Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19-25, 2007

  2. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Contents 1 Introduction 2 Chebyshev polynomials 3 Symmetrical Zolotarev polynomials 4 Overview 5 Application in Filter Design 6 Conclusion Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19-25, 2007

  3. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Introduction Chebyshev Polynomials and their Relatives approximation view numerical view nonlinear differential eq. ⇒ linear differential eq. ⇓ ⇓ parametric solution recursive algorithms Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19-25, 2007

  4. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Chebyshev polynomials - approximation view � dy � 2 = n 2 ( 1 − y 2 ) ( 1 − x 2 ) dx 1.5 • • • • 1 0.5 T n ( x ) 0 −0.5 • • • −1 −1.5 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 x → Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19-25, 2007

  5. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Parametric solutions of differential equation � dy � 2 = n 2 ( 1 − y 2 ) ( 1 − x 2 ) dx ⇓ dy dx 1 − y 2 = n √ 1 − x 2 � x = cos Φ De Moivre’s formula y = cos n Φ y ( x ) = T n ( cos Φ) ⇒ Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  6. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion The second order differential equation � dy � 2 = n 2 ( 1 − y 2 ) ( 1 − x 2 ) dx ⇓ ( 1 − x 2 ) d 2 y dx 2 − x dy dx + n 2 y = 0 n t ( k ) x k y ( x ) ≡ T n ( x ) = � k = 0 .. is a polynomial of variable x Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  7. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Recursive evalution of the coefficients t ( k ) given n t ( n ) = 2 n − 1 initialisation t ( n − 1 ) = 0 recursive body ( for k = n − 2 to 0 t ( k ) = − ( k + 2 )( k + 1 ) t ( k + 2 ) n 2 − k 2 end ) Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  8. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion • Algorithm produces the coefficients t ( k ) for Chebyshev polynomials T n ( x ) as expected. x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 T 0 1 0 0 0 0 0 0 0 0 0 T 1 0 1 0 0 0 0 0 0 0 0 T 2 -1 0 2 0 0 0 0 0 0 0 T 3 0 -3 0 4 0 0 0 0 0 0 T 4 1 0 -8 0 8 0 0 0 0 0 T 5 0 5 0 -20 0 16 0 0 0 0 T 6 -1 0 18 0 -48 0 32 0 0 0 T 7 0 - 7 0 56 0 -112 0 64 0 0 T 8 1 0 -32 0 160 0 -256 0 128 0 T 9 0 9 0 -120 0 432 0 -576 0 256 Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19-25, 2007

  9. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Comments • The second order differential equation converts parametric representation to the explicit form • In contrast to the explicit formula n ( − 1 ) m ( n − m − 1 )! T n ( x ) = n ( 2 x ) n − 2 m � m ! ( n − 2 m )! 2 m = 0 the algorithm computes t ( k ) for quite high order polynomials ( n ≈ 100 ′ s ) � ( 2 ) × n • The maximum of the coefficients appears at ≈ 2 Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  10. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Absolute values of the coefficients n = 100 36 x 10 12 10 8 6 4 2 0 0 20 40 60 80 100 Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  11. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Symmetrical Zolotarev polynomials -approximation � dy � 2 ( 1 − x 2 )( x 2 − κ ′ 2 ) = 4 m 2 x 2 ( 1 − y 2 ) dx 6 • 5 T m (2 cn 2 ( u | κ ) − 1) 4 3 2 • • • • 1 0 • • −1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 x = dn( u | κ ) → Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19-25, 2007

  12. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Parametric solutions of differential equation � dy � 2 ( 1 − x 2 )( x 2 − κ ′ 2 ) = 4 m 2 x 2 ( 1 − y 2 ) dx ⇓ dy xdx 1 − y 2 = 2 m ( 1 − x 2 )( x 2 − κ ′ 2 ) � � x = dn ( u | κ ) Jacobi elliptic functions � 2 x 2 − 1 − κ ′ 2 � y = T m ( 2 cn 2 ( u | κ ) − 1 ) ⇒ y ( x ) = T m 1 − κ ′ 2 Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  13. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion The second order differential equation � dy � 2 ( 1 − x 2 )( x 2 − κ ′ 2 ) = 4 m 2 x 2 ( 1 − y 2 ) dx ⇓ ( 1 − x 2 ) d 2 y dx 2 − x dy + κ ′ 2 ( 1 − x 2 ) dy � � dx + 4 m 2 x 3 y = 0 x ( x 2 − κ ′ 2 ) dx m � 2 x 2 − 1 − κ ′ 2 � b ( 2 k ) x 2 k y ( x ) ≡ T m � = 1 − κ ′ 2 k = 0 .. is a polynomial of variable x Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  14. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Recursive evalution of the coefficients b ( 2 k ) given m 2 2 m − 1 initialisation b ( 2 m ) = ( 1 − κ ′ 2 ) m , b ( 2 m + 2 ) = 0 recursive body ( for k = m − 1 to 0 b ( 2 k ) = − ( 1 + κ ′ 2 )( 2 k + 2 )( 2 k + 1 ) b ( 2 k + 2 ) 4 m 2 − 4 k 2 + κ ′ 2 ( 2 k + 4 )( 2 k + 2 ) b ( 2 k + 4 ) 4 m 2 − 4 k 2 end ) Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  15. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion An alternative representation m � 2 x 2 − 1 − κ ′ 2 � y ( x ) ≡ T m a ( 2 k ) T 2 k ( x ) � = 1 − κ ′ 2 k = 0 .. is developed in terms of Chebyshev polynomials m Inserting y ( x ) = a ( 2 k ) T 2 k ( x ) in differential equation � k = 0 ( 1 − x 2 ) d 2 y dx 2 − x dy + κ ′ 2 ( 1 − x 2 ) dy dx + 4 m 2 x 3 y = 0 � � x ( x 2 − κ ′ 2 ) dx we obtain... Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  16. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Recursive algorithm for the coefficients a ( 2 k ) given m 1 initialisation a ( 2 m ) = ( 1 − κ ′ 2 ) m a ( 2 m + 2 ) = a ( 2 m + 4 ) = 0 recursive body ( for k = m − 1 to 0 m 2 − k 2 � a ( 2 k ) = � − 3 ( m 2 − ( k + 1 ) 2 ) + ( 2 k + 2 )( 2 k + 1 ) κ ′ 2 � a ( 2 k + 2 ) � + 3 ( m 2 − ( k + 2 ) 2 ) + ( 2 k + 4 )( 2 k + 5 ) κ ′ 2 � a ( 2 k + 4 ) � + m 2 − ( k + 3 ) 2 � a ( 2 k + 6 ) � + end ) Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  17. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Comments • Properties of Jacobi elliptic functions as κ ′ 2 + κ 2 cn 2 ( u | κ ) = dn 2 ( u | κ ) convert parametric representation to the explicit form • The second order differential equation produces recursive algorithms for coefficients b ( 2 k ) and a ( 2 k ) • The dynamic range of coefficients a ( 2 k ) is far better than b ( 2 k ) and it enables to evaluate safely the symmetrical Zolotarev polynomial of order ( n ≈ 1000 ′ s ) Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  18. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Dynamic range of both representations m = 50 5 37 x 10 x 10 6 1 4 0.5 a(2k) b(2k) 2 0 0 −2 −0.5 −4 −1 −6 20 40 60 80 100 20 40 60 80 100 Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

  19. Introduction Chebyshev polynomials Symmetrical Zolotarev polynomials Overview Application in Filter Design Conclusion Equiripple polynomials T 2 m (cn( u | κ )) 2 2 T n ( x ) 0 0 −2 −2 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 x → x = dn( u | κ ) → Z m, 2 ,m ( x | κ ) 2 2 Z p,q ( x | κ ) 0 0 −2 −2 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 x → x → Miroslav Vlˇ cek Robust Algorithms, Harrachov, August 19 -25, 2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend