eyring kramers formula
play

Eyring-Kramers formula for Poincar e and logarithmic Sobolev - PowerPoint PPT Presentation

Eyring-Kramers formula for Poincar e and logarithmic Sobolev inequalities Andr e Schlichting Institute for Applied Mathematics, University of Bonn 5 th Workshop on Random Dynamical Systems, Bielefeld. October 5, 2012 Andr e


  1. Eyring-Kramers formula for Poincar´ e and logarithmic Sobolev inequalities Andr´ e Schlichting Institute for Applied Mathematics, University of Bonn 5 th Workshop on Random Dynamical Systems, Bielefeld. October 5, 2012 Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 1 / 10

  2. Introduction Overdamped Langevin dynamics Hamiltonian H : R n → R energy landscape Dynamic at temperature ε ≪ 1 √ d X t = −∇ H ( X t )d t + 2 ε d W t � � 1 − H Gibbs measure µ (d x ) = Z µ exp d x , ε � e − H ε d x where Z µ = Generator law X t = f t µ evolves ∂ t f t = Lf t := ε ∆ f t − ∇ H · ∇ f t . � Dirichlet form E ( f ) := ( − Lf ) f d µ |∇ f | 2 d µ. � = ε Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 2 / 10

  3. Introduction Overdamped Langevin dynamics Hamiltonian H : R n → R energy landscape Dynamic at temperature ε ≪ 1 √ d X t = −∇ H ( X t )d t + 2 ε d W t � � 1 − H Gibbs measure µ (d x ) = Z µ exp d x , ε � e − H ε d x where Z µ = Generator law X t = f t µ evolves ∂ t f t = Lf t := ε ∆ f t − ∇ H · ∇ f t . � Dirichlet form E ( f ) := ( − Lf ) f d µ |∇ f | 2 d µ. � = ε Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 2 / 10

  4. Introduction Overdamped Langevin dynamics Hamiltonian H : R n → R energy landscape Dynamic at temperature ε ≪ 1 √ d X t = −∇ H ( X t )d t + 2 ε d W t � � 1 − H Gibbs measure µ (d x ) = Z µ exp d x , ε � e − H ε d x where Z µ = Generator law X t = f t µ evolves ∂ t f t = Lf t := ε ∆ f t − ∇ H · ∇ f t . � Dirichlet form E ( f ) := ( − Lf ) f d µ |∇ f | 2 d µ. � = ε Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 2 / 10

  5. Introduction Overdamped Langevin dynamics Hamiltonian H : R n → R energy landscape Dynamic at temperature ε ≪ 1 √ d X t = −∇ H ( X t )d t + 2 ε d W t � � 1 − H Gibbs measure µ (d x ) = Z µ exp d x , ε � e − H ε d x where Z µ = Generator law X t = f t µ evolves ∂ t f t = Lf t := ε ∆ f t − ∇ H · ∇ f t . � Dirichlet form E ( f ) := ( − Lf ) f d µ |∇ f | 2 d µ. � = ε Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 2 / 10

  6. Introduction Overdamped Langevin dynamics Hamiltonian H : R n → R energy landscape Dynamic at temperature ε ≪ 1 √ d X t = −∇ H ( X t )d t + 2 ε d W t � � 1 − H Gibbs measure µ (d x ) = Z µ exp d x , ε � e − H ε d x where Z µ = Generator law X t = f t µ evolves ∂ t f t = Lf t := ε ∆ f t − ∇ H · ∇ f t . � Dirichlet form E ( f ) := ( − Lf ) f d µ |∇ f | 2 d µ. � = ε Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 2 / 10

  7. Poincar´ e and logarithmic Sobolev inequality Definition e inequality PI( ̺ ) if ∀ f : R n → R µ satisfies the Poincar´ �� � 2 � � d µ ≤ 1 f 2 − |∇ f | 2 d µ. var µ ( f ) := f d µ PI( ̺ ) ̺ and the logarithmic Sobolev inequality LSI( α ) if ∀ f : R n → R � |∇ f | 2 � f d µ d µ ≤ 1 f Ent µ ( f ) := f log d µ. LSI( α ) � 2 f α PI( ̺ ) and LSI( α ) imply exponential convergence to µ : PI( ̺ ) ⇒ var µ ( f t ) ≤ var µ ( f 0 ) e − 2 ̺ε t LSI( α ) ⇒ Ent µ ( f t ) ≤ Ent µ ( f 0 ) e − 2 αε t . Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 3 / 10

  8. Poincar´ e and logarithmic Sobolev inequality Definition e inequality PI( ̺ ) if ∀ f : R n → R µ satisfies the Poincar´ �� � 2 � � d µ ≤ 1 f 2 − |∇ f | 2 d µ. var µ ( f ) := f d µ PI( ̺ ) ̺ and the logarithmic Sobolev inequality LSI( α ) if ∀ f : R n → R � |∇ f | 2 � f d µ d µ ≤ 1 f Ent µ ( f ) := f log d µ. LSI( α ) � 2 f α PI( ̺ ) and LSI( α ) imply exponential convergence to µ : PI( ̺ ) ⇒ var µ ( f t ) ≤ var µ ( f 0 ) e − 2 ̺ε t LSI( α ) ⇒ Ent µ ( f t ) ≤ Ent µ ( f 0 ) e − 2 αε t . Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 3 / 10

  9. Poincar´ e and logarithmic Sobolev inequality Definition e inequality PI( ̺ ) if ∀ f : R n → R µ satisfies the Poincar´ �� � 2 � � d µ ≤ 1 f 2 − |∇ f | 2 d µ. var µ ( f ) := f d µ PI( ̺ ) ̺ and the logarithmic Sobolev inequality LSI( α ) if ∀ f : R n → R � � f 2 f 2 d µ d µ ≤ 2 f 2 log |∇ f | 2 d µ. Ent µ ( f 2 ) := LSI( α ) � α PI( ̺ ) and LSI( α ) imply exponential convergence to µ : PI( ̺ ) ⇒ var µ ( f t ) ≤ var µ ( f 0 ) e − 2 ̺ε t LSI( α ) ⇒ Ent µ ( f t ) ≤ Ent µ ( f 0 ) e − 2 αε t . Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 3 / 10

  10. Poincar´ e and logarithmic Sobolev inequality Definition e inequality PI( ̺ ) if ∀ f : R n → R µ satisfies the Poincar´ �� � 2 � � d µ ≤ 1 f 2 − |∇ f | 2 d µ. var µ ( f ) := f d µ PI( ̺ ) ̺ and the logarithmic Sobolev inequality LSI( α ) if ∀ f : R n → R � � f 2 f 2 d µ d µ ≤ 2 f 2 log |∇ f | 2 d µ. Ent µ ( f 2 ) := LSI( α ) � α PI( ̺ ) and LSI( α ) imply exponential convergence to µ : PI( ̺ ) ⇒ var µ ( f t ) ≤ var µ ( f 0 ) e − 2 ̺ε t LSI( α ) ⇒ Ent µ ( f t ) ≤ Ent µ ( f 0 ) e − 2 αε t . Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 3 / 10

  11. Partitions Basins of attraction Ω 0 ⊎ Ω 1 = R n of local minima m 0 , m 1 : Ω i := { y 0 ∈ R n : ˙ y t = −∇ H ( y t ) , y t → m i } . Restricted measures µ 0 , µ 1 : Ω 0 Ω 1 µ i := µ � Ω i , i = 0 , 1 . Mixture representation m 0 m 1 s 0 , 1 µ = Z 0 µ 0 + Z 1 µ 1 , Z i := µ (Ω i ) . Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 4 / 10

  12. Splitting Lemma Z 0 Z 1 ( E µ 0 ( f ) − E µ 1 ( f )) 2 var µ ( f ) = Z 0 var µ 0 ( f ) + Z 1 var µ 1 ( f ) + � �� � � �� � local variances mean-difference local entropies � �� � Ent µ ( f 2 ) ≤ Z 0 Ent µ 0 ( f 2 ) + Z 1 Ent µ 1 ( f 2 ) � var µ 0 ( f ) + var µ 1 ( f ) + ( E µ 0 ( f ) − E µ 1 ( f )) 2 � Z 0 Z 1 + , Λ( Z 0 , Z 1 ) Z 0 − Z 1 where Λ( Z 0 , Z 1 ) = log Z 0 − log Z 1 is the logarithmic mean. Expect from heuristics: good estimate for local variances/entropies exponential estimate for mean-difference Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 5 / 10

  13. Splitting Lemma Z 0 Z 1 ( E µ 0 ( f ) − E µ 1 ( f )) 2 var µ ( f ) = Z 0 var µ 0 ( f ) + Z 1 var µ 1 ( f ) + � �� � � �� � local variances mean-difference local entropies � �� � Ent µ ( f 2 ) ≤ Z 0 Ent µ 0 ( f 2 ) + Z 1 Ent µ 1 ( f 2 ) � var µ 0 ( f ) + var µ 1 ( f ) + ( E µ 0 ( f ) − E µ 1 ( f )) 2 � Z 0 Z 1 + , Λ( Z 0 , Z 1 ) Z 0 − Z 1 where Λ( Z 0 , Z 1 ) = log Z 0 − log Z 1 is the logarithmic mean. Expect from heuristics: good estimate for local variances/entropies exponential estimate for mean-difference Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 5 / 10

  14. Splitting Lemma Z 0 Z 1 ( E µ 0 ( f ) − E µ 1 ( f )) 2 var µ ( f ) = Z 0 var µ 0 ( f ) + Z 1 var µ 1 ( f ) + � �� � � �� � local variances mean-difference local entropies � �� � Ent µ ( f 2 ) ≤ Z 0 Ent µ 0 ( f 2 ) + Z 1 Ent µ 1 ( f 2 ) � var µ 0 ( f ) + var µ 1 ( f ) + ( E µ 0 ( f ) − E µ 1 ( f )) 2 � Z 0 Z 1 + , Λ( Z 0 , Z 1 ) Z 0 − Z 1 where Λ( Z 0 , Z 1 ) = log Z 0 − log Z 1 is the logarithmic mean. Expect from heuristics: good estimate for local variances/entropies exponential estimate for mean-difference Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 5 / 10

  15. Main results Theorem (Local PI and LSI) The measures µ 0 and µ 1 satisfy PI( ̺ loc ) and LSI( α loc ) with ̺ − 1 α − 1 loc = O ( ε ) and loc = O (1) . PI is as good as convex potential Non-convexity of potential worsens LSI Both results scale optimal in one dimension Theorem (Mean-difference estimate) � � | det ∇ 2 H ( s 0 , 1 ) | Z µ 2 πε |∇ f | 2 d µ. ( E µ 0 f − E µ 1 f ) 2 � e ε − 1 H ( s 0 , 1 ) n | λ − ( ∇ 2 H ( s 0 , 1 )) | (2 πε ) 2 “ � ”: up to multiplicative error 1 + o (1) as ε → 0 . Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 6 / 10

  16. Main results Theorem (Local PI and LSI) The measures µ 0 and µ 1 satisfy PI( ̺ loc ) and LSI( α loc ) with ̺ − 1 α − 1 loc = O ( ε ) and loc = O (1) . PI is as good as convex potential Non-convexity of potential worsens LSI Both results scale optimal in one dimension Theorem (Mean-difference estimate) � � | det ∇ 2 H ( s 0 , 1 ) | Z µ 2 πε |∇ f | 2 d µ. ( E µ 0 f − E µ 1 f ) 2 � e ε − 1 H ( s 0 , 1 ) n | λ − ( ∇ 2 H ( s 0 , 1 )) | (2 πε ) 2 “ � ”: up to multiplicative error 1 + o (1) as ε → 0 . Andr´ e Schlichting (IAM Bonn) Eyring-Kramers formula for PI and LSI October 5, 2012 6 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend