iii v channel transistors
play

III-V Channel Transistors Jess A. del Alamo Professor Microsystems - PowerPoint PPT Presentation

III-V Channel Transistors Jess A. del Alamo Professor Microsystems Technology Laboratories MIT Acknowledgements: Students and collaborators: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao Sponsors: Applied Materials, DTRA, KIST,


  1. III-V Channel Transistors Jesús A. del Alamo Professor Microsystems Technology Laboratories MIT Acknowledgements: • Students and collaborators: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao • Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung • Labs at MIT: MTL, EBL 24 April 2017

  2. Moore’s Law at 50: the end in sight? 2

  3. Moore’s Law Moore’s Law = exponential increase in transistor density 2016: Intel 22-core Xeon Broadwell-E5 7.2B transistors Intel microprocessors 3

  4. Moore’s Law How far can Si support Moore’s Law? ? 4

  5. Transistor scaling  Voltage scaling  Performance suffers Supply voltage: Transistor current density: Intel microprocessors Intel microprocessors Goals: • Reduced footprint with moderate short-channel effects • High performance at low voltage 5

  6. Moore’s Law: it’s all about MOSFET scaling 1. New device structures with improved scalability: 2. New materials with improved transport characteristics: n-channel: Si  Strained Si  SiGe  InGaAs p-channel: Si  Strained Si  SiGe  Ge  InGaSb 6

  7. III-V electronics in your pocket! 7

  8. Contents 8

  9. 1. Self-aligned Planar InGaAs MOSFETs dry-etched recess selective MOCVD W Mo Lin, IEDM 2012, 2013, 2014 Lee, EDL 2014; Huang, IEDM 2014 implanted Si + selective epi reacted NiInAs Sun, IEDM 2013, 2014 Chang, IEDM 2013 9

  10. Self-aligned Planar InGaAs MOSFETs @ MIT W Mo Lin, IEDM 2012, 2013, 2014 1.0 V gs -V t = 0.5 V L g =20 nm R on =224  m 0.8 0.4 V I d (mA/  m) Recess-gate process: 0.6 • CMOS-compatible 0.4 0.2 • Refractory ohmic contacts 0.0 • Extensive use of RIE 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) 10

  11. Fabrication process Mo/W ohmic contact CF 4 :O 2 isotropic RIE SF 6 , CF 4 anisotropic RIE + SiO 2 hardmask Resist SiO 2 W/Mo n + InGaAs/InP InP InGaAs/InAs  -Si InAlAs Waldron, IEDM 2007 Digital etch Finished device Cl 2 :N 2 anisotropic RIE O 2 plasma H 2 SO 4 Pad Mo HfO 2 Lin, EDL 2014 • Ohmic contact first, gate last • Precise control of vertical (~1 nm), lateral (~5 nm) dimensions • MOS interface exposed late in process 11

  12. Highest performance InGaAs MOSFET • Channel: In 0.7 Ga 0.3 As/InAs/In 0.7 Ga 0.3 As (t ch =9 nm) • Gate oxide: HfO 2 (2.5 nm, EOT~ 0.5 nm) 3.45 mS/  m Exceeds best HEMT! L g =70 nm: • Record g m,max = 3.45 mS/µm at V ds = 0.5 V • R on = 190 Ω.µm Lin, EDL 2016 12

  13. Excess OFF-state current Transistor fails to turn off: L g =500 nm -5 10 V ds ↑ I d (A/  m) -7 10 -9 10 V ds =0.3~0.7 V step=50 mV -11 10 -0.6 -0.4 -0.2 0.0 V gs (V) OFF-state current enhanced with V ds  Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013 13

  14. Excess OFF-state current L g =500 nm -5 10 -4 10 T=200 K V ds ↑ V ds =0.7 V -5 I d (A/  m) 10 -7 10 I d (A/  m) -6 10 L g =80 nm -9 10 -7 10 120 nm V ds =0.3~0.7 V 280 nm step=50 mV -8 10 -11 10 500 nm -0.6 -0.4 -0.2 0.0 V gs (V) -0.6 -0.4 -0.2 0.0 V gs -V t (V) Simulations W/ BTBT+BJT w/ BTBT+BJT -5 10 W/O BTBT w/o BTBT+BJT Lin, EDL 2014 L g =500 nm I d (A/  m) Lin, TED 2015 -7 10 -9 10 L g ↓  OFF-state current ↑ V ds =0.3~0.7 V  bipolar gain effect due to floating body step=50 mV -11 10 -0.4 -0.2 0.0 0.2 V gs (V) 14

  15. 2. InGaAs FinFETs Intel Si Trigate MOSFETs 15

  16. Bottom-up InGaAs FinFETs Aspect-Ratio Trapping Fiorenza, ECST 2010 Si Epi-grown fin inside trench Waldron, VLSI Tech 2014 16

  17. Top-down InGaAs FinFETs dry-etched fins Radosavljevic, IEDM 2010 60 nm Kim, IEDM 2013 17

  18. FinFET benchmarking g m normalized by width of gate periphery Natarajan, 2.0 0.18 IEDM 2014 Si FinFETs 5.3 0.23 1.8 4.3 0.57 1.5 1 0.66 g m [mS/  m] 1.0 channel 0.63 aspect 0.6 0.5 0.8 ratio 1 InGaAs FinFETs 0.0 0 20 40 60 W f [nm] • State-of-the-art Si FinFETs: W f =7 nm 18

  19. FinFET benchmarking g m normalized by width of gate periphery Natarajan, 2.0 Radosavljevic, 0.18 IEDM 2014 Si FinFETs IEDM 2011 5.3 0.23 1.8 4.3 0.57 1.5 channel 1 0.66 Kim, IEDM 2013 aspect g m [mS/  m] ratio 1.0 0.63 0.6 0.5 0.8 1 InGaAs FinFETs 0.0 0 20 40 60 Oxland, EDL 2016 Thathachary, W f [nm] VLSI 2015 • Narrowest InGaAs FinFET fin: W f =15 nm • Best channel aspect ratio of InGaAs FinFET: 1.8 • g m much lower than planar InGaAs MOSFETs 19

  20. InGaAs FinFETs @ MIT Key enabling technologies: BCl 3 /SiCl 4 /Ar RIE + digital etch Vardi, • Sub-10 nm fin width DRC 2014, • Aspect ratio > 20 EDL 2015, • Vertical sidewalls IEDM 2015 20

  21. InGaAs FinFETs @ MIT Mo Mo High‐K HSQ SiO 2 HSQ L g W/Mo High‐K n + ‐InGaAs InP InGaAs InGaAs δ ‐ Si InAlAs InP Vardi, VLSI Tech 2016 Vardi, EDL 2016 • CMOS compatible process • Mo contact-first process • Fin etch mask left in place  double-gate MOSFET 21

  22. Most aggressively scaled FinFET W f =7 nm, L g =30 nm, H c =40 nm (AR=5.7), EOT=0.6 nm: 1E-3 1E-4 V DS =500 mV 500 V GS =-0.5 to 0.75 V DS =50 mV 1E-5  V GS =0.25 V DIBL=90 mV/V I d [A/  m] 400 S sat =100 mV/dev 1E-6 I d [  A/  m] 300 1E-7 200 1E-8 100 1E-9 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0 V GS [V] 0.0 0.1 0.2 0.3 0.4 0.5 g m max =900  S/  m V DS [V] 1000 Current normalized by 2xH c 800 V DS =0.5 V g m [  S/  m] 600 At V DS =0.5 V: • g m =900 µS/µm 400 • R on =320 Ω.µm 200 • S sat =100 mV/dec 0 -0.4 -0.2 0.0 0.2 0.4 Vardi, EDL 2016 V GS [V] 22

  23. L g and EOT scaling 1600 250 A: Al 2 O 3 , EOT=2.8 nm 1400 V DS =0.5 V B:Al 2 O 3 /HfO 2 , EOT=1 nm 200 1200 W f  20-22 nm C: HfO 2 , EOT=0.6 nm EOT  1000 S sat [mV/dec] 150 g m [  S/  m] 800 600 100 400 50 200 60 mV/dec EOT  0 0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 L g [nm] L g [nm] 0.4 350 I off =100 nA/  m 300 0.2 EOT  V DS =0.5 V 250 0.0 200 I on [  A/  m] V T [V] -0.2 150 100 -0.4 EOT  50 -0.6 0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 L g [nm] L g [nm] Classical scaling with L g and EOT 23

  24. Fin width scaling (EOT=0.6 nm) Contaminated by 150 1600 gate leakage 1400 1200 100 1000 S sat,min [mV/dec] g m max [  S/  m] 800 W f =22  nm 600  W f = 5 nm 50 W f =7 nm 60 mV/dec 400 W f =12 nm 200 W f =17 nm 0  W f =22 nm 0 0 100 200 300 400 500 600 100 1000 L g [nm] L g [nm]  2500 0.3 7 nm  W f = 5 nm 0.2 2000 12 0.1 1500 R on [  m] 0.0 V T [V] 17 W f =22 nm 1000 -0.1 -0.2 500 W f =22 nm -0.3 0 0 50 100 150 200 250 300 0 100 200 300 L g [nm] L g [nm] • Non-ideal fin width scaling • High D it (~5x10 12 cm -2 .eV -1 ); mobility degradation; line edge roughness 24

  25. InGaAs FinFETs: g m benchmarking g m normalized by width of gate periphery: 2.0 W f 0.18 Si FinFETs 5.3 0.23 1.8 4.3 0.57 H c 1.5 H c 1 0.66 2.31.8 g m [mS/  m] 3.3 1.0 5.7 0.63 0.6 0.5 0.8 1 InGaAs FinFETs Double gate Trigate 0.0 0 20 40 60 W f [nm] • First InGaAs FinFETs with W f <10 nm • Record results for InGaAs FinFETs with W f < 25 nm • Still short of Si FinFETs (though they operate at V DD =0.8 V) 25

  26. InGaAs FinFETs: g m benchmarking g m normalized by fin width (FOM for density): 20 W f W f 5.3 Si FinFETs (V DD =0.8 V) 15 H c H c 4.3 g m /W f [mS/  m] 10 5.7 InGaAs FinFETs 1.8 3.3 5 1 0.18 0.66 2.31.8 0.23 1 0.57 0.63 0.6 0.8 0 Vardi, EDL 2016 0 20 40 60 W f [nm] Doubled g m /W f over earlier InGaAs FinFETs 26

  27. Impact of fin width on V T InGaAs doped-channel FinFETs: 50 nm thick, N D ~10 18 cm -3 Vardi, IEDM 2015 T=90K • Strong V T sensitivity for W f < 10 nm; much worse than Si • Due to quantum effects • Big concern for future manufacturing 27

  28. 3. Vertical nanowire MOSFET: ultimate scalable transistor L c L spacer L g Vertical NW MOSFET:  uncouples footprint scaling from L g , L spacer , and L c scaling 28

  29. Vertical nanowire MOSFET for 5 nm node 5 nm node Yakimets, TED 2015 Bao, ESSDERC 2014 30% area reduction in 6T‐SRAM 19% area reduction in 32 bit multiplier Vertical NW:  power, performance and area gains w.r.t. Lateral NW or FinFET 29

  30. InGaAs Vertical Nanowires on Si by direct growth Au seed InAs NWs on Si by SAE Selective-Area Epitaxy Vapor-Solid-Liquid (VLS) Technique Riel, MRS Bull 2014 Björk, JCG 2012 30

  31. InGaAs VNW MOSFETs by top-down approach @ MIT Key enabling technologies: 15 nm • RIE = BCl 3 /SiCl 4 /Ar chemistry • Digital Etch (DE) = O 2 plasma oxidation H 2 SO 4 oxide removal 240 nm • Sub-20 nm NW diameter • Aspect ratio > 10 • Smooth sidewalls Zhao, EDL 2014 31

  32. InGaAs VNW Mechanical Stability for D<10 nm Difficult to reach 10 nm VNW diameter due to breakage 8 nm InGaAs VNWs: Yield = 0% Broken NW 32

  33. InGaAs VNW Mechanical Stability for D<10 nm Difficult to reach 10 nm VNW diameter due to breakage 8 nm InGaAs VNWs: Yield = 0% Water-based acid is problem: Broken NW Surface tension (mN/m): • Water: 72 • Methanol: 22 • IPA: 23 Solution: alcohol-based digital etch 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend