correlation decay up to uniqueness in spin systems
play

Correlation Decay up to Uniqueness in Spin Systems Yitong Yin - PowerPoint PPT Presentation

Correlation Decay up to Uniqueness in Spin Systems Yitong Yin Nanjing University Joint work with Liang Li ( Peking Univ ) Pinyan Lu ( Microsoft research Asia ) Two-State Spin System 2 states {0,1} graph G =( V , E ) configuration : V { 0


  1. Correlation Decay up to Uniqueness in Spin Systems Yitong Yin Nanjing University Joint work with Liang Li ( Peking Univ ) Pinyan Lu ( Microsoft research Asia )

  2. Two-State Spin System 2 states {0,1} graph G =( V , E ) configuration σ : V → { 0 , 1 } � A 0 , 0 � � β � A 0 , 1 1 A = = A 1 , 0 A 1 , 1 γ 1 b = ( b 0 , b 1 ) = ( λ , 1) � � w ( σ ) = A σ ( u ) , σ ( v ) b σ ( v ) ( u,v ) ∈ E v ∈ V 1 β γ edge activity: external field: 1 λ

  3. Two-State Spin System 2 states {0,1} graph G =( V , E ) configuration σ : V → { 0 , 1 } � A 0 , 0 � � β � A 0 , 1 1 A = = A 1 , 0 A 1 , 1 γ 1 b = ( b 0 , b 1 ) = ( λ , 1) � � w ( σ ) = A σ ( u ) , σ ( v ) b σ ( v ) ( u,v ) ∈ E v ∈ V �� ( σ ) = w ( σ ) Gibbs measure: Z ( G ) partition function: � w ( σ ) Z ( G ) = σ ∈ { 0 , 1 } V

  4. � A 0 , 0 � � β � A 0 , 1 1 b = ( b 0 , b 1 ) = ( λ , 1) A = = A 1 , 0 A 1 , 1 γ 1 � � w ( σ ) = A σ ( u ) , σ ( v ) b σ ( v ) ( u,v ) ∈ E v ∈ V partition function: � Z ( G ) w ( σ ) = σ ∈ { 0 , 1 } V marginal probability: �� σ [ σ ( v ) = 0 | σ ( v 1 ) , . . . , σ ( v k )] n � �� ( τ ) = �� σ [ σ ( v k ) = τ ( v k ) | σ ( v i ) = τ ( v i ) , 1 ≤ i < k ] k =1 = w ( τ ) 1 /poly(n) additive error FPTAS for Z ( G ) Z for marginal in poly-time

  5. ferromagnetic: βγ > 1 FPRAS: [Jerrum-Sinclair’93] [Goldberg-Jerrum-Paterson’03] anti-ferromagnetic: βγ < 1 hardcore model: [Weitz’06] β = 0 , γ = 1 Ising model: [Sinclair-Srivastava-Thurley’12] β = γ ∃ FPTAS for graphs ( β , γ , λ ) lies in the interior of of max-degree Δ uniqueness region of Δ -regular tree 3 γ [Goldberg-Jerrum-Paterson’03] 2.5 �� = 1 uniqueness threshold threshold achieved by FPRAS for arbitrary graphs heatbath random walk 2 1.5 � [Li-Lu-Y. ’12]: no external field 1 FPTAS for arbitrary graphs 0 < � , � < 1 0.5 β 0 0 0.5 1 1.5 2 2.5 3 �

  6. anti-ferromagnetic: βγ < 1 bounded Δ or Δ = ∞ ( β , γ , λ ) lies in the interiors of uniqueness regions of d -regular trees for all d ≤ Δ . ∃ FPTAS for graphs of max-degree Δ [Galanis-Stefankovic-Vigoda’12]: [Sly-Sun’12] ( β , γ , λ ) lies in the interiors of non-uniqueness regions of d -regular trees for some d ≤ Δ . assuming ∄ FPRAS for graphs of max-degree Δ NP ≠ RP

  7. Uniqueness Condition marginal ( d +1) -regular tree ± exp(- t ) at root � d � β x + 1 f d ( x ) = λ reg. x + γ t tree x d = f d (ˆ ˆ x d ) | f � d (ˆ x d ) | < 1 arbitrary boundary config

  8. anti-ferromagnetic: βγ < 1 � d � β x + 1 bounded Δ or Δ = ∞ f d ( x ) = λ x + γ ∀ d < ∆ , | f � d (ˆ x d ) | < 1 ∃ FPTAS for graphs of max-degree Δ [Galanis-Stefankovic-Vigoda’12]: [Sly-Sun’12] ∃ d < ∆ , | f � d (ˆ x d ) | > 1 assuming ∄ FPRAS for graphs of max-degree Δ NP ≠ RP

  9. Correlation Decay weak spatial mixing (WSM): ∀ σ ∂ B , τ ∂ B ∈ { 0 , 1 } ∂ B �� σ [ σ ( v ) = 0 | σ ∂ B ] ≈ �� σ [ σ ( v ) = 0 | τ ∂ B ] strong spatial mixing (SSM): �� σ [ σ ( v ) = 0 | σ ∂ B , σ Λ ] ≈ �� σ [ σ ( v ) = 0 | τ ∂ B , σ Λ ] G error < exp (- t ) exponential ∂ B correlation decay B t v Λ uniqueness: WSM in reg. tree

  10. Self-Avoiding Walk Tree due to Weitz (2006) T = T ��� ( G, v ) G =( V , E ) 1 v 1 4 2 3 4 3 2 6 6 4 3 5 σ Λ 5 6 6 5 1 6 6 1 5 6 6 preserve the marginal dist. at v 4 5 4 6 6 4 on bounded degree graphs: 4 SSM FPTAS

  11. hardcore model, anti-ferro Ising model: (for ) β , γ < 1 SSM in Δ -reg. tree in reg. trees: SSM in graphs WSM SSM of degree ≤Δ SSM in graphs WSM in Δ -reg. tree of degree ≤Δ

  12. hardcore model, anti-ferro Ising model: (for ) β , γ < 1 SSM in trees SSM in Δ -reg. tree of degree ≤Δ in reg. trees: WSM SSM SSM in trees SSM in graphs of degree ≤Δ of degree ≤Δ fixing SAW-tree

  13. for general anti-ferro 2-state spin systems: SSM in trees SSM in Δ -reg. tree of degree ≤Δ in reg. trees: WSM SSM SSM in trees SSM in graphs of degree ≤Δ of degree ≤Δ SAW-tree

  14. WSM in d -reg. trees SSM in trees for d ≤Δ of degree ≤Δ SSM in trees SSM in graphs of degree ≤Δ of degree ≤Δ in reg. trees: WSM SSM

  15. for general anti-ferro 2-state spin systems: WSM in d -reg. trees SSM in trees for d ≤Δ of degree ≤Δ SSM in trees SSM in graphs of degree ≤Δ of degree ≤Δ WSM in d -reg. trees SSM in graphs of degree ≤Δ for d ≤Δ

  16. x ∈ [ R, R + δ ] δ = ��� ( − Ω ( n )) T v x = �� [ σ ( v ) = 0 | σ Λ ] v 1 v 2 v d T d T 1 �� [ σ ( v ) = 1 | σ Λ ] x ����������� n ∈ [0 , ∞ ) d � β x i + 1 � � x = f ( x 1 , . . . , x d ) = λ x i + γ i =1

  17. Potential Analysis f ( x ) F n ( x ) = f � f � · · · � f ( x ) f � �� � n x F n ( x + δ ) − F n ( x ) = F � n ( x 0 ) · δ n � 1 � x t = f ( x t − 1 ) f � ( x t ) = δ · t =0 n � 1 = δ · Φ ( x 0 ) Φ ( f ( x t )) � f � ( x t ) Φ ( x n ) · Φ ( x t ) t =0

  18. Potential Analysis φ f ( x ) g ( y ) G n ( x ) = g � g � · · · � g ( x ) � �� � n g f φ − 1 G n ( x + δ ) − G n ( x ) = G � n ( x 0 ) · δ y x n � 1 � G � g � ( x t ) n ( x 0 ) = t =0 n � 1 � [ φ ( f ( φ � 1 ( y t ))] � = t =0 n � 1 Φ ( f ( x t )) � φ � ( x ) = Φ ( x ) f � ( x t ) = Φ ( x t ) t =0

  19. 1 φ � ( x ) = Φ ( x ) = � x ( β x + 1)( x + γ ) y x v v φ v 1 v 2 v d v 1 v 2 v d + δ d + δ 1 x d y d x 1 y 1 d � β x i + 1 � � g ( y 1 , . . . , y d ) = φ ( f ( φ − 1 ( y 1 ) , . . . , φ − 1 ( y d ))) f ( x 1 , . . . , x d ) = λ x i + γ i =1 g ( y 1 , . . . , y d ) � g ( y 1 + δ 1 , . . . , y d + δ d ) = �� φ ( f ( φ − 1 ( y 1 ) , . . . , φ − 1 ( y d ))) · ( δ 1 , . . . , δ d ) ≤ α ( d ; x 1 , . . . , x d ) · ��� 1 ≤ i ≤ d { δ i } amortized decay rate

  20. amortized decay rate α ( d ; x 1 , � , x d ) � 1 � λ � d 2 β x i +1 1 (1 − βγ ) d 2 i =1 x i + γ x � i = 2 · � 1 � 1 1 1 2 ( x i + γ ) ( β x i + 1) � 2 � βλ � d λ � d 2 β x i +1 β x i +1 x i + γ + 1 x i + γ + γ i =1 i =1 i =1 Cauchy-Schwarz arithmetic and geometric means α d ( x ) � α ( d ; x, . . . , x ) � �� � d � � d � � β x +1 � d (1 − βγ ) λ � d (1 − βγ ) x x + γ � = � � � � � ( β x + 1)( x + γ ) � d � d � � � β x +1 β x +1 + 1 + γ βλ λ � x + γ x + γ = Φ ( f ( x )) | f � ( x ) | Φ ( x )

  21. � � d � � β x +1 � d (1 − βγ ) λ � d (1 − βγ ) x α d ( x ) x + γ � = � � � � � ( β x + 1)( x + γ ) � d � d � � � β x +1 β x +1 + 1 + γ βλ λ � x + γ x + γ � � d (1 − βγ ) x d (1 − βγ ) f d ( x ) = ( β x + 1)( x + γ ) ( β f d ( x ) + 1) ( f d ( x ) + γ ) � d (1 − βγ )ˆ x ≤ ( β ˆ x + 1)(ˆ x + γ ) � d � β x + 1 � f d ( x ) = λ = | f � d (ˆ x d ) | x + γ + δ y x d = f d (ˆ ˆ x d ) δ ≤ α · ��� 1 ≤ i ≤ d { δ i } v | f � d (ˆ x d ) | < 1 α < 1 v 1 v 2 v d + δ d + δ 1 y d y 1

  22. anti-ferromagnetic: βγ < 1 � d � β x + 1 f d ( x ) = λ x + γ ∀ d < ∆ , | f � d (ˆ x d ) | < 1 SSM in trees of max-degree Δ SSM in graphs of max-degree Δ ∃ FPTAS for graphs of max-degree Δ bounded Δ SSM in reg. trees: WSM SSM in Δ - reg. tree | f � ∆ (ˆ x ∆ ) | < 1 [Weitz’06] + [Sinclair-Srivastava-Thurley’12] + translation

  23. requirement of potential function: � d � β x + 1 x = f (ˆ ˆ x ) f ( x ) = λ x + γ uniqueness: | f � (ˆ x ) | < 1 | f � ( x ) | · Φ ( f ( x )) amortized decay: < 1 Φ ( x )

  24. requirement of potential function: � d � β x + 1 x = f (ˆ ˆ x ) f ( x ) = λ x + γ phase-trans: | f � (ˆ x ) | = 1 | f � ( x ) | · Φ ( f ( x )) amortized decay: Φ ( x ) x ) | · Φ ( f (ˆ x )) | f � (ˆ = 1 Φ (ˆ x ) � � � � f � ( x ) · Φ ( f ( x )) � = 0 � Φ ( x ) � � x =ˆ � 1 x � β x ))) � = − f �� (ˆ x ) = 1 1 (ln( Φ (ˆ x + x + γ + β ˆ 2 2 ˆ ˆ x + 1

  25. requirement of potential function: � 1 � x ))) � = 1 1 β (ln( Φ (ˆ x + x + γ + 2 ˆ ˆ β ˆ x + 1 strengthen the requirement: � 1 � (ln( Φ ( x ))) � = 1 1 β x + x + γ + 2 β x + 1 C Φ ( x ) = � x ( β x + 1)( x + γ )

  26. Computationally Efficient Correlation Decay + δ y v δ ≤ α d ( x ) · ��� 1 ≤ i ≤ d { δ i } v 1 v 2 v d + δ d + δ 1 y d y 1 � � d (1 − βγ ) x d (1 − βγ ) f d ( x ) α d ( x ) = ( β x + 1)( x + γ ) ( β f d ( x ) + 1) ( f d ( x ) + γ ) for some

  27. Computationally Efficient Correlation Decay + δ y v δ ≤ α d ( x ) · ��� 1 ≤ i ≤ d { δ i } v 1 v 2 v d + δ d + δ 1 y d y 1 for some α d ( x ) for small one-step recursion decays for large one-step recursion decays steps! behaves like

  28. Computationally Efficient Correlation Decay M -ary v v “span” v 1 v 2 v d d leaves old metric v 1 v 2 v d new metric correlation decay in size grows exponentially: distance = O(log n ) 1 /poly-precision in poly-time

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend