correlation decay up to uniqueness in spin systems
play

Correlation Decay up to Uniqueness in Spin Systems Yitong Yin - PowerPoint PPT Presentation

Correlation Decay up to Uniqueness in Spin Systems Yitong Yin Nanjing University Joint work with Liang Li ( Peking University ) Pinyan Lu ( Microsoft research Asia ) Two-State Spin System 2 states {0,1} graph G =( V , E ) configuration : V


  1. Correlation Decay up to Uniqueness in Spin Systems Yitong Yin Nanjing University Joint work with Liang Li ( Peking University ) Pinyan Lu ( Microsoft research Asia )

  2. Two-State Spin System 2 states {0,1} graph G =( V , E ) configuration σ : V → { 0 , 1 } � A 0 , 0 � � β � A 0 , 1 1 A = = A 1 , 0 A 1 , 1 γ 1 b = ( b 0 , b 1 ) = ( λ , 1) � � w ( σ ) = A σ ( u ) , σ ( v ) b σ ( v ) ( u,v ) ∈ E v ∈ V 1 β γ edge activity: external field: 1 λ

  3. Two-State Spin System 2 states {0,1} graph G =( V , E ) configuration σ : V → { 0 , 1 } � A 0 , 0 � � β � A 0 , 1 1 A = = A 1 , 0 A 1 , 1 γ 1 b = ( b 0 , b 1 ) = ( λ , 1) � � w ( σ ) = A σ ( u ) , σ ( v ) b σ ( v ) ( u,v ) ∈ E v ∈ V �� ( σ ) = w ( σ ) Gibbs measure: Z ( G ) partition function: � w ( σ ) Z ( G ) = σ ∈ { 0 , 1 } V

  4. � � w ( σ ) = A σ ( u ) , σ ( v ) b σ ( v ) ( u,v ) ∈ E v ∈ V partition function: � Z ( G ) w ( σ ) = σ ∈ { 0 , 1 } V �� ( σ ) = w ( σ ) Gibbs measure: Z ( G ) marginal probability: �� ( σ ( v ) = 0 | σ Λ ) 1 /n additive error for FPTAS for Z ( G ) marginal in poly(n)-time

  5. ferromagnetic: βγ > 1 FPRAS: [Jerrum-Sinclair’93] [Goldberg-Jerrum-Paterson’03] anti-ferromagnetic: βγ < 1 hardcore model: [Weitz’06] β = 0 , γ = 1 Ising model: [Sinclair-Srivastava-Thurley’12] β = γ ∃ FPTAS for graphs ( β , γ , λ ) lies in the interior of of max-degree Δ uniqueness region of Δ -regular tree 3 γ 2.5 �� = 1 uniqueness threshold threshold achieved by [Goldberg-Jerrum-Paterson’03] heatbath random walk 2 1.5 � [Li-Lu-Y. ’12]: 1 FPTAS for arbitrary graphs 0 < � , � < 1 0.5 β 0 0 0.5 1 1.5 2 2.5 3 �

  6. anti-ferromagnetic: βγ < 1 bounded Δ or Δ = ∞ ( β , γ , λ ) lies in the interiors of uniqueness regions of d -regular trees for all d ≤ Δ . ∃ FPTAS for graphs of max-degree Δ [Galanis-Stefankovic-Vigoda’12]: [Sly-Sun’12] ( β , γ , λ ) lies in the interiors of non-uniqueness regions of d -regular trees for some d ≤ Δ . assuming ∄ FPRAS for graphs of max-degree Δ NP ≠ RP

  7. Uniqueness Condition marginal ( d +1) -regular tree ± exp(- t ) at root � d � β x + 1 f d ( x ) = λ reg. x + γ t tree x d = f d (ˆ ˆ x d ) | f � d (ˆ x d ) | < 1 arbitrary boundary config

  8. anti-ferromagnetic: βγ < 1 � d � β x + 1 bounded Δ or Δ = ∞ f d ( x ) = λ x + γ ∀ d < ∆ , | f � d (ˆ x d ) | < 1 ∃ FPTAS for graphs of max-degree Δ [Galanis-Stefankovic-Vigoda’12]: [Sly-Sun’12] ∃ d < ∆ , | f � d (ˆ x d ) | > 1 assuming ∄ FPRAS for graphs of max-degree Δ NP ≠ RP

  9. Correlation Decay weak spatial mixing (WSM): ∀ σ ∂ B , τ ∂ B ∈ { 0 , 1 } ∂ B | �� ( σ ( v ) = 0 | σ ∂ B ) − �� ( σ ( v ) = 0 | τ ∂ B ) | ≤ ��� ( − Ω ( t )) strong spatial mixing (SSM): | �� ( σ ( v ) = 0 | σ ∂ B , σ Λ ) − �� ( σ ( v ) = 0 | τ ∂ B , σ Λ ) | ≤ ��� ( − Ω ( t )) G Uniqueness: ∂ B B WSM in reg. tree t v Λ

  10. Self-Avoiding Walk Tree due to Weitz (2006) T = T ��� ( G, v ) G =( V , E ) 1 v 1 4 2 3 4 3 2 6 6 4 3 5 σ Λ 5 6 6 5 1 6 6 1 5 6 6 preserve the marginal dist. at v 4 5 4 6 6 4 on bounded degree graphs: 4 SSM FPTAS

  11. x ∈ [ R, R + δ ] δ = ��� ( − Ω ( n )) T v x = �� [ σ ( v ) = 0 | σ Λ ] v 1 v 2 v d T d T 1 �� [ σ ( v ) = 1 | σ Λ ] x ����������� n ∈ [0 , ∞ ) d � β x i + 1 � � x = f ( x 1 , . . . , x d ) = λ x i + γ i =1

  12. Potential Analysis f ( x ) F n ( x ) = f � f � · · · � f ( x ) f � �� � n x F n ( x + δ ) − F n ( x ) = F � n ( x 0 ) · δ n � 1 � x t = f ( x t − 1 ) f � ( x t ) = δ · t =0 n � 1 = δ · Φ ( x 0 ) Φ ( f ( x t )) � f � ( x t ) Φ ( x n ) · Φ ( x t ) t =0

  13. Potential Analysis φ f ( x ) g ( y ) G n ( x ) = g � g � · · · � g ( x ) � �� � n g f φ − 1 G n ( x + δ ) − G n ( x ) = G � n ( x 0 ) · δ y x n � 1 � G � g � ( x t ) n ( x 0 ) = t =0 n � 1 � [ φ ( f ( φ � 1 ( y t ))] � = t =0 n � 1 Φ ( f ( x t )) � φ � ( x ) = Φ ( x ) f � ( x t ) = Φ ( x t ) t =0

  14. 1 φ � ( x ) = Φ ( x ) = � x ( β x + 1)( x + γ ) y x v v φ v 1 v 2 v d v 1 v 2 v d + δ d + δ 1 x d y d x 1 y 1 d � β x i + 1 � � g ( y 1 , . . . , y d ) = φ ( f ( φ − 1 ( y 1 ) , . . . , φ − 1 ( y d ))) f ( x 1 , . . . , x d ) = λ x i + γ i =1 g ( y 1 , . . . , y d ) � g ( y 1 + δ 1 , . . . , y d + δ d ) = �� φ ( f ( φ − 1 ( y 1 ) , . . . , φ − 1 ( y d ))) · ( δ 1 , . . . , δ d ) ≤ α ( d ; x 1 , . . . , x d ) · ��� 1 ≤ i ≤ d { δ i } amortized decay rate

  15. amortized decay rate α ( d ; x 1 , � , x d ) � 1 � λ � d 2 β x i +1 1 (1 − βγ ) d 2 i =1 x i + γ x � i = 2 · � 1 � 1 1 1 2 ( x i + γ ) ( β x i + 1) � 2 � βλ � d λ � d 2 β x i +1 β x i +1 x i + γ + 1 x i + γ + γ i =1 i =1 i =1 Convexity analysis α d ( x ) � α ( d ; x, . . . , x ) � �� � d � � d � � β x +1 � d (1 − βγ ) λ � d (1 − βγ ) x x + γ � = � � � � � ( β x + 1)( x + γ ) � d � d � � � β x +1 β x +1 + 1 + γ βλ λ � x + γ x + γ = Φ ( f ( x )) | f � ( x ) | Φ ( x )

  16. � � d � � β x +1 � d (1 − βγ ) λ � d (1 − βγ ) x α d ( x ) x + γ � = � � � � � ( β x + 1)( x + γ ) � d � d � � � β x +1 β x +1 + 1 + γ βλ λ � x + γ x + γ � � d (1 − βγ ) x d (1 − βγ ) f d ( x ) = ( β x + 1)( x + γ ) ( β f d ( x ) + 1) ( f d ( x ) + γ ) � d (1 − βγ )ˆ x ≤ ( β ˆ x + 1)(ˆ x + γ ) � d � β x + 1 � f d ( x ) = λ = | f � d (ˆ x d ) | x + γ + δ y x d = f d (ˆ ˆ x d ) δ ≤ α · ��� 1 ≤ i ≤ d { δ i } v | f � d (ˆ x d ) | < 1 α < 1 v 1 v 2 v d + δ d + δ 1 y d y 1

  17. anti-ferromagnetic: βγ < 1 � d � β x + 1 f d ( x ) = λ x + γ ∀ d < ∆ , | f � d (ˆ x d ) | < 1 SSM in trees of max-degree Δ SSM in graphs of max-degree Δ ∃ FPTAS for graphs of max-degree Δ bounded Δ

  18. Computationally Efficient Correlation Decay + δ y v δ ≤ α d ( x ) · ��� 1 ≤ i ≤ d { δ i } v 1 v 2 v d + δ d + δ 1 y d y 1 � � d (1 − βγ ) x d (1 − βγ ) f d ( x ) α d ( x ) = ( β x + 1)( x + γ ) ( β f d ( x ) + 1) ( f d ( x ) + γ ) for some

  19. Computationally Efficient Correlation Decay + δ y v δ ≤ α d ( x ) · ��� 1 ≤ i ≤ d { δ i } v 1 v 2 v d + δ d + δ 1 y d y 1 for some α d ( x ) for small one-step recursion decays for large one-step recursion decays steps! behaves like

  20. anti-ferromagnetic: βγ < 1 WSM in d -reg. trees for d ≤ Δ ∃ FPTAS for graphs of max-degree Δ bounded Δ or Δ = ∞ hardcore model [Weitz’06] Ising model [Sinclair-Srivastava-Thurley’12] [Li-Lu-Y. ’12] unbounded-degree graphs, no external field

  21. Open Problems • Characterization of SSM in ferromagnetic 2-state spin systems. • SSM in multi-state spin systems: • difficulty: no SAW-tree; • implications: WSM vs. SSM in reg. trees, monotonicity of WSM/SSM w.r.t degree. • Apply potential analysis and computationally efficient correlation decay to other problems.

  22. Thank you! (again)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend