an asymptotic version of a theorem of knuth
play

An Asymptotic Version of a Theorem of Knuth Jonathan Novak MSRI - PowerPoint PPT Presentation

An Asymptotic Version of a Theorem of Knuth Jonathan Novak MSRI & Waterloo Permutation Patterns 2010 August 10, 2010 Symmetry Schensted pairs s ( d , N ) = no. of Schensted pairs on partitions N , ( ) d s (3 , 9) = 94 359


  1. An Asymptotic Version of a Theorem of Knuth Jonathan Novak MSRI & Waterloo Permutation Patterns 2010 August 10, 2010

  2. Symmetry

  3. Schensted pairs s ( d , N ) = no. of Schensted pairs on partitions λ ⊢ N , ℓ ( λ ) ≤ d s (3 , 9) = 94 359 1 2 3 4 5 1 3 5 7 9 6 7 8 2 4 6 9 8 s ( d , N ) = ?

  4. Knuth’s formula Theorem s (2 , N ) = dim R (2 , N ) Proof. ♣ ♣ ♣ ♣ ♥ ♥ ♥ ♥ � ♣ ♣ ♣ ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♥ ♥ Corollary � 2 N � 1 s (2 , N ) = . N + 1 N

  5. A general formula � (dim λ ) 2 , s ( d , N ) = λ ⊢ N ℓ ( λ ) ≤ d where N ! � ( λ i − λ j + j − i ) . dim λ = � d i =1 ( λ i − i + d )! 1 ≤ i < j ≤ d Challenge: use this formula to estimate s (3 , 10 10 ) .

  6. Regev’s formula Theorem For any fixed d ≥ 1 , � d − 1 � d 2 N + d 2 1 − d 2 � 1 − d 2 (2 N ) s ( d , N ) ∼ (2 π ) i ! 2 2 i =0 � d − 1 � � � � � d 2 1 − d 2 1 − d 2 � 1 − d d 2 N N 2 2 = (2 π ) i ! d 2 2 2 i =0 � �� � � �� � S ( d , N ) growth rate GUE partition function as N → ∞ .

  7. Regev’s formula Proof. “Continuous” Schensted pairs: ♣ ♣ ♣ ♣ ♥ ♥ ♥ ♥ . . . ♣ ♣ ♥ ♥ � �� � β times � (dim λ ) β s ( d , N ; β ) := λ ⊢ N ℓ ( λ ) ≤ d � C β e − β W ( y 1 ,..., y d − 1 ) d y d , N s ( d , N ; β ) → Ω d − 1 � �� � Mehta-Dyson-Selberg

  8. Asymmetry

  9. Asymmetry ♠ ♠ ♠ ♠ ♥ ♥ ♥ ♥ ♠ ♥ � ? ♠ ♥ ♠ ♠ ♠ ♠ ? � ♠ ♥ ♥ ♥ ♠ ♥ ♥ ♥

  10. Symmetry

  11. Symmetry

  12. Symmetry

  13. Symmetry

  14. Asymptotic symmetry ♠ ♠ ♠ ♠ ♠ ♥ ♥ ♥ ♥ ♥ ♣ ♣ ♣ ♣ ♣ ♣ ♠ ♠ ♠ ♥ ♥ ♥ ♣ ♣ ♣ ♣ ♣ ♣ � ♠ ♥ ♣ ♣ ♣ ♣ ♣ ♣ Conjecture: s ( d , N ) ∼ dim R ( d , 2 N / d )

  15. Verification of asymptotic symmetry Exact formula: ( dq )! dim R ( d , q ) = � d − 1 ( q + i )! i =0 i ! Dimension of a d × ∞ strip: � d − 1 � � 1 − d 2 1 − d d dq + 1 2 q dim R ( d , q ) ∼ (2 π ) i ! 2 2 i =0 Scaling dictated by symmetry: q � 2 N / d Reproduces Regev’s formula: � d − 1 � � d 2 N + d 2 1 − d 2 1 − d 2 (2 N ) dim R ( d , 2 N / d ) ∼ (2 π ) i ! 2 2 i =0

  16. Asymptotic Knuth theorem Theorem For any fixed d ≥ 1 , s ( d , dn ) ∼ dim R ( d , 2 n ) as n → ∞ . Corollary The number of permutations in S ( dn ) with no decreasing subsequence of length d + 1 is asymptotically equal to the number of involutions in S (2 dn ) with longest decreasing subsequence of length exactly d and longest increasing subsequence of length exactly 2 n .

  17. Error term Complements: µ ⊂ R ( d , q ) , µ ∗ R ( d , q ) = ( q − µ d , q − µ d − 1 , . . . , q − µ 1 ) Theorem s ( d , dn ) = dim R ( d , 2 n ) + E ( d , dn ) , where E ( d , dn ) = 1 � � (dim µ − dim µ ∗ ) 2 (dim ν ) 2 + . 2 µ ⊢ dn ν ⊢ dn ν 1 > 2 n µ ⊂ R ( d , 2 n ) � �� � � �� � large deviation asymmetry

  18. Laplace method If you want to understand a sum/integral where the integrand contains a large parameter, the maximum of the integrand is the centre of the universe. √ n , . . . , n + y d √ n ) ∼ ? dim( n + y 1

  19. Laplace method Theorem For any fixed y 1 > · · · > y d , y 1 + · · · + y d = 0 , √ n , . . . , n + y d √ n ) = e − W ( y 1 ,..., y d ) , n →∞ C d , dn dim( n + y 1 lim where d W ( y 1 , . . . , y d ) = 1 � � y 2 i − log( y i − y j ) . 2 i =1 1 ≤ i < j ≤ d Proof. √ n , . . . , n + y d √ n ) dim( n + y 1 (( y i − y j ) √ n + j − i ) . Γ( dn + 1) � = √ n + i + d + 1) � d i =1 Γ( n + y i 1 ≤ i < j ≤ d

  20. Laplace method � (dim λ ) β s ( d , N ; β ) = λ ⊢ N ℓ ( λ ) ≤ d � n →∞ C β e − β W ( y 1 ,..., y d ) d y lim d , dn s ( d , dn ; β ) = Ω d − 1 Ω d − 1 = { y 1 > · · · > y d , y 1 + · · · + y d = 0 } ⊂ R d − 1 Regev: evaluate this (difficult) integral.

  21. Laplace method � (dim µ )(dim µ ∗ ) . dim R ( d , 2 n ) = µ ⊢ dn µ ⊂ R ( d , 2 n ) � (dim µ ) γ (dim µ ∗ ) δ . t ( d , dn ; γ, δ ) = µ ⊢ dn µ ⊂ R ( d , 2 n ) Exactly the same argument: � n →∞ C γ + δ e − γ W ( y 1 ,..., y d ) e − δ W ( − y d ,..., − y 1 ) d y . lim d , dn t ( d , dn ; γ, δ ) = Ω d − 1

  22. Symmetry returns s ( d , dn ) ∼ dim R ( d , 2 n ) � � � e − 2 W ( y 1 ,..., y d ) d y = e − W ( y 1 ,..., y d ) e − W ( − y d ,..., − y 1 ) d y Ω d − 1 Ω d − 1 ⇑ W ( y 1 , . . . , y d ) = W ( − y d , . . . , − y 1 )

  23. Symmetry returns Energy: d W ( y 1 , . . . , y d ) = 1 � � y 2 i − log( y i − y j ) . 2 i =1 1 ≤ i < j ≤ d Symmetry: W ( y 1 , . . . , y d ) = W ( − y d , . . . , − y 1 )

  24. Symmetry returns W ( y 1 , . . . , y d ) = W ( − y d , . . . , − y 1 ) Theorem For any 0 ≤ γ < β, � � (dim λ ) β ∼ (dim µ ) γ (dim µ ∗ ) β − γ λ ⊢ dn µ ⊢ dn ℓ ( λ ) ≤ d µ ⊂ R ( d , 2 n ) Corollary � � (dim λ ) 2 ∼ (dim µ )(dim µ ∗ ) = dim R ( d , 2 n ) λ ⊢ dn µ ⊢ dn ℓ ( λ ) ≤ d µ ⊂ R ( d , 2 n )

  25. Mehta-Dyson integral Energy: d W ( t 1 , . . . , t d ) = 1 � � t 2 i − log( t i − t j ) . 2 i =1 1 ≤ i < j ≤ d Partition function (Mehta-Dyson integral): � e − β W ( t 1 ,..., t d ) d t Ψ( d ; β ) = W d W d = { t 1 > · · · > t d } ⊂ R d

  26. Mehta-Dyson conjecture: d Γ(1 + i β 2 ) Ψ( d ; β ) = 1 � 2 − β d ( d − 1) 2 β − d d d !(2 π ) . 4 Γ(1 + β 2 ) i =1 • Bombieri: Selberg = ⇒ Mehta-Dyson • Symmetry = ⇒ Ψ( d ; 2) • Dyson: Ψ( d ; 2 k ) = ⇒ Ψ( d ; β ) . • Symmetry = ⇒ Ψ( d ; 2 k )???

  27. Double-Scaling limit Baik-Deift-Johansson, Okounkov, Borodin-Okounkov-Olshanski, Johansson: Theorem For d , N → ∞ at the rate d ∼ 2 N 1 / 2 + tN 1 / 6 , s ( d , N ) ∼ F ( t ) N ! , where F ( t ) = Tracy-Widom distribution function. s ( d , dn ) = dim R ( d , 2 n )+1 � � (dim µ − dim µ ∗ ) 2 + (dim ν ) 2 . 2 µ ⊢ dn ν ⊢ dn ν 1 > 2 n µ ⊂ R ( d , 2 n ) Asymptotics of E ( d , dn ) in double scaling limit???

  28. Acknowledgements Many thanks to Michael Albert and Andrei Okounkov.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend