multi d shock waves and surface waves
play

Multi-d shock waves and surface waves S. Benzoni-Gavage University - PowerPoint PPT Presentation

Multi-d shock waves stability Neutral stability and well-posedness Weakly nonlinear surface waves Multi-d shock waves and surface waves S. Benzoni-Gavage University of Lyon (Universit e Claude Bernard Lyon 1 / Institut Camille Jordan)


  1. Multi-d shock waves stability Neutral stability and well-posedness Weakly nonlinear surface waves Multi-d shock waves and surface waves S. Benzoni-Gavage University of Lyon (Universit´ e Claude Bernard Lyon 1 / Institut Camille Jordan) HYP2008 conference, June 11, 2008. 1 / 26

  2. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Outline Multi-d shock waves stability 1 Theory Examples Neutral stability and well-posedness 2 Weakly nonlinear surface waves 3 Derivation of amplitude equation Well-posedness for amplitude equation 2 / 26

  3. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves General equations for a ‘shock wave’ t ∂ t f 0 ( u ) + ∂ j f j ( u ) = 0 n , Φ( t , x ) � = 0 , [ f 0 ( u )] ∂ t Φ + [ f j ( u )] ∂ j Φ = 0 n , Φ( t , x ) = 0 . x d Φ = 0 x 1 3 / 26

  4. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves General equations for a ‘shock wave’ t ∂ t f 0 ( u ) + ∂ j f j ( u ) = 0 n , Φ( t , x ) � = 0 , [ f 0 ( u )] ∂ t Φ + [ f j ( u )] ∂ j Φ = 0 n , Φ( t , x ) = 0 . x d Φ = 0 x 1 Basic assumption: hyperbolicity in t -direction, i.e. for all u ∈ U ⊂ R n , the matrix A 0 ( u ) := d f 0 ( u ) is nonsingular, and for all ν ∈ R d , the matrix A 0 ( u ) − 1 A j ( u ) ν j only has real semisimple eigenvalues. 3 / 26

  5. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves General equations for a ‘shock wave’ t ∂ t f 0 ( u ) + ∂ j f j ( u ) = 0 n , Φ( t , x ) � = 0 , [ f 0 ( u )] ∂ t Φ + [ f j ( u )] ∂ j Φ = 0 n , Φ( t , x ) = 0 . x d Φ = 0 x 1 A 0 ( u , ν ) := A 0 ( u ) − 1 ( A 0 ( u ) ν 0 + A j ( u ) ν j ) 3 / 26

  6. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves General equations for a ‘shock wave’ t ∂ t f 0 ( u ) + ∂ j f j ( u ) = 0 n , Φ( t , x ) � = 0 , [ f 0 ( u )] ∂ t Φ + [ f j ( u )] ∂ j Φ = 0 n , Φ( t , x ) = 0 . x d Φ = 0 x 1 A 0 ( u , ν ) := A 0 ( u ) − 1 ( A 0 ( u ) ν 0 + A j ( u ) ν j ) Shock is noncharacteristic iff both matrices A 0 ( u ± , ∇ Φ) are nonsingular along Φ = 0. 3 / 26

  7. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves General equations for a ‘shock wave’ t ∂ t f 0 ( u ) + ∂ j f j ( u ) = 0 n , Φ( t , x ) � = 0 , [ f 0 ( u )] ∂ t Φ + [ f j ( u )] ∂ j Φ = 0 n , Φ( t , x ) = 0 . x d Φ = 0 x 1 A 0 ( u , ν ) := A 0 ( u ) − 1 ( A 0 ( u ) ν 0 + A j ( u ) ν j ) Shock is classical (or Laxian) iff dim E u ( A 0 ( u − , ∇ Φ)) + dim E s ( A 0 ( u + , ∇ Φ)) = n + 1, dim E u ( A 0 ( u + , ∇ Φ) + dim E s ( A 0 ( u − , ∇ Φ)) = n − 1. 3 / 26

  8. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves General equations for a ‘shock wave’ t ∂ t f 0 ( u ) + ∂ j f j ( u ) = 0 n , Φ( t , x ) � = 0 , [ f 0 ( u )] ∂ t Φ + [ f j ( u )] ∂ j Φ = 0 n , Φ( t , x ) = 0 . x d Φ = 0 x 1 A 0 ( u , ν ) := A 0 ( u ) − 1 ( A 0 ( u ) ν 0 + A j ( u ) ν j ) Shock is undercompressive iff dim E u ( A 0 ( u − , ∇ Φ)) + dim E s ( A 0 ( u + , ∇ x Φ)) = n + 1 − p , dim E u ( A 0 ( u + , ∇ Φ) + dim E s ( A 0 ( u − , ∇ Φ)) = n − 1 + p . 3 / 26

  9. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves General equations for a ‘shock wave’ t ∂ t f 0 ( u ) + ∂ j f j ( u ) = 0 n , Φ( t , x ) � = 0 , [ f 0 ( u )] ∂ t Φ + [ f j ( u )] ∂ j Φ = 0 n , Φ( t , x ) = 0 . x d [ g 0 ( u )] ∂ t Φ + [ g j ( u )] ∂ j Φ = 0 p , Φ( t , x ) = 0 . Φ = 0 x 1 A 0 ( u , ν ) := A 0 ( u ) − 1 ( A 0 ( u ) ν 0 + A j ( u ) ν j ) Shock is undercompressive iff dim E u ( A 0 ( u − , ∇ Φ)) + dim E s ( A 0 ( u + , ∇ x Φ)) = n + 1 − p , dim E u ( A 0 ( u + , ∇ Φ) + dim E s ( A 0 ( u − , ∇ Φ)) = n − 1 + p . 3 / 26

  10. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Linear analysis Ref. planar shock t = σ t x d x d x 1 ı’70] , [Kreiss’70] , [Blokhin’82] , [Majda’83] , [Freist¨ uhler’98] . [Lopatinski˘ 4 / 26

  11. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Linear analysis Ref. planar shock t Change frame = ⇒ σ = 0 . x d x 1 ı’70] , [Kreiss’70] , [Blokhin’82] , [Majda’83] , [Freist¨ uhler’98] . [Lopatinski˘ 4 / 26

  12. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Linear analysis Ref. planar shock t Change frame = ⇒ σ = 0 . Change coordinates ( t , x ) �→ ( t , y ) := ( t , x 1 , . . . , x d − 1 , Φ( t , x )), Φ( t , x ) = x d − χ ( t , x 1 , . . . , x d − 1 ). x d x 1 ı’70] , [Kreiss’70] , [Blokhin’82] , [Majda’83] , [Freist¨ uhler’98] . [Lopatinski˘ 4 / 26

  13. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Linear analysis Ref. planar shock t Change frame = ⇒ σ = 0 . Change coordinates ( t , x ) �→ ( t , y ) := ( t , x 1 , . . . , x d − 1 , Φ( t , x )), Φ( t , x ) = x d − χ ( t , x 1 , . . . , x d − 1 ). Linearize eqns about x d ( u , χ ) = ( u , 0) , u := u ± , y d ≷ 0 . x 1 ı’70] , [Kreiss’70] , [Blokhin’82] , [Majda’83] , [Freist¨ uhler’98] . [Lopatinski˘ 4 / 26

  14. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Normal modes analysis Transmission problem: � A 0 ( u ) ∂ t u + A j ( u ) ∂ j u = 0 n , y d ≷ 0 , [ F 0 ( u )] ∂ t χ + [ F j ( u )] ∂ j χ = [ d F d ( u ) · u ] , y d = 0 . 5 / 26

  15. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Normal modes analysis Transmission problem: � A 0 ( u ) ∂ t u + A j ( u ) ∂ j u = 0 n , y d ≷ 0 , [ F 0 ( u )] ∂ t χ + [ F j ( u )] ∂ j χ = [ d F d ( u ) · u ] , y d = 0 . Fourier-Laplace transform ( t , ˇ y ) ❀ ( τ, ˇ η ) ⇒ shooting ODE problem. 5 / 26

  16. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Normal modes analysis Transmission problem: � A 0 ( u ) ∂ t u + A j ( u ) ∂ j u = 0 n , y d ≷ 0 , [ F 0 ( u )] ∂ t χ + [ F j ( u )] ∂ j χ = [ d F d ( u ) · u ] , y d = 0 . Fourier-Laplace transform ( t , ˇ y ) ❀ ( τ, ˇ η ) ⇒ shooting ODE problem. A d ( u , ν ) := A d ( u ) − 1 ( A 0 ( u ) ν 0 + A j ( u ) ν j ) 5 / 26

  17. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Normal modes analysis Transmission problem: � A 0 ( u ) ∂ t u + A j ( u ) ∂ j u = 0 n , y d ≷ 0 , [ F 0 ( u )] ∂ t χ + [ F j ( u )] ∂ j χ = [ d F d ( u ) · u ] , y d = 0 . Fourier-Laplace transform ( t , ˇ y ) ❀ ( τ, ˇ η ) ⇒ shooting ODE problem. A d ( u , ν ) := A d ( u ) − 1 ( A 0 ( u ) ν 0 + A j ( u ) ν j ) Normal modes: χ = X e τ t + i η j y j , u = U ( y d ) e τ t + i η j y j with U ∈ L 2 ( R ), R e ( τ ) > 0, U (0+) ∈ E u ( A d ( u , τ, i ˇ η )) and U (0 − ) ∈ E s ( A d ( u , τ, i ˇ η )). 5 / 26

  18. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Normal modes analysis Transmission problem: � A 0 ( u ) ∂ t u + A j ( u ) ∂ j u = 0 n , y d ≷ 0 , [ F 0 ( u )] ∂ t χ + [ F j ( u )] ∂ j χ = [ d F d ( u ) · u ] , y d = 0 . Fourier-Laplace transform ( t , ˇ y ) ❀ ( τ, ˇ η ) ⇒ shooting ODE problem. A d ( u , ν ) := A d ( u ) − 1 ( A 0 ( u ) ν 0 + A j ( u ) ν j ) Neutral modes of finite energy, or surface waves: χ = X e i η 0 t + i η j y j , u = U ( y d ) e i η 0 t + i η j y j with still U ∈ L 2 ( R ), U (0+) ∈ E u ( A d ( u , i η 0 , i ˇ η )) and U (0 − ) ∈ E s ( A d ( u , i η 0 , i ˇ η )). 5 / 26

  19. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Surface waves t x d x 1 u x d x 1 6 / 26

  20. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Surface waves Isotropic elasticity t ∂ tt u = λ ∆ u + ( λ + µ ) ∇ div u , x 2 > 0 , ∂ 2 u 1 + ∂ 1 u 2 = 0 , x 2 = 0 , µ∂ 1 u 1 + (2 λ + µ ) ∂ 2 u 2 = 0 , x 2 = 0 . x d x 1 u x d [Rayleigh1885] (see also [Serre’06] ) x 1 6 / 26

  21. Multi-d shock waves stability Theory Neutral stability and well-posedness Examples Weakly nonlinear surface waves Surface waves Isotropic elasticity t ∂ tt u = λ ∆ u + ( λ + µ ) ∇ div u , x 2 > 0 , ∂ 2 u 1 + ∂ 1 u 2 = 0 , x 2 = 0 , µ∂ 1 u 1 + (2 λ + µ ) ∂ 2 u 2 = 0 , x 2 = 0 . x d For λ > 0, λ + µ > 0, ∃ Rayleigh x 1 u waves, or ‘Surface Acoustic Waves’, √ of speed less than λ . x d [Rayleigh1885] (see also [Serre’06] ) x 1 6 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend