variational discretization of pde constrained optimal
play

Variational discretization of PDE constrained optimal control - PowerPoint PPT Presentation

Variational discretization of PDE constrained optimal control problems with measure controls Evelyn Herberg joint work with Michael Hinze and Henrik Schumacher Workshop: New trends in PDE constrained optimization October 14, 2019 - RICAM Linz,


  1. Variational discretization of PDE constrained optimal control problems with measure controls Evelyn Herberg joint work with Michael Hinze and Henrik Schumacher Workshop: New trends in PDE constrained optimization October 14, 2019 - RICAM Linz, Austria

  2. Motivation Goal: preserve sparsity on the discrete level Herberg Variational discretization October 14, 2019 1

  3. Problem formulation Parabolic control problem (from [2]) J ( u 0 , u ) = 1 q � y − y d � q min L q ( Q ) + α � u � M ( ¯ Q c ) + β � u 0 � M ( ¯ Ω c ) , ( u 0 , u ) ∈M ( ¯ Ω c ) ×M ( ¯ Q c ) ( P ) where y solves the state equation:  ∂ t y − △ y = u in Q = Ω × (0 , T )    in Ω ⊂ R d y ( x , 0) = u 0   y ( x , t ) = 0 on Σ = Γ × (0 , T )  Theorem ([2, Theorem 2.7]) u 0 ) ∈ M (¯ Q c ) × M ( ¯ Problem (P) has at least one solution (¯ u , ¯ Ω c ) for � � 2 , d +2 every 1 ≤ q < min . If q > 1 the solution is unique. d ——————————————————————————————— [2] Casas, E., & Kunisch, K. (2016) Herberg Variational discretization October 14, 2019 2

  4. Problem formulation Optimality conditions Theorem ([2, Theorem 3.1]) Let (¯ u , ¯ u 0 ) denote a solution to (P) with associated state ¯ y. Then there 0 ( Ω )) ∩ C (¯ exists an element w ∈ L 2 (0 , T ; H 1 Q ) satisfying  − ∂ t w − △ w = ¯ g in Q ,    w ( x , T ) = 0 in Ω,   w ( x , t ) = 0 on Σ ,  where y − y d | q − 2 (¯  � � 2 , d +2 = | ¯ y − y d ) , if 1 < q < min ,  d g ¯ ∈ sign (¯ y − y d ) , if q = 1 .  ——————————————————————————————— [2] Casas, E., & Kunisch, K. (2016) Herberg Variational discretization October 14, 2019 3

  5. Problem formulation Optimality conditions Theorem (continued) w also fulfills:  � Q c w d ¯ u + α � ¯ u � M ( ¯ Q c ) = 0 , ¯    � = α , if ¯ u � = 0 , � w � C ( ¯  Q c )  ≤ α , if ¯ u = 0   � Ω c w (0) d ¯ u 0 + α � ¯ u 0 � M ( ¯ Ω c ) = 0 , ¯    � = β , if ¯ u 0 � = 0 , � w (0) � C ( ¯  Ω c )  ≤ β , if ¯ u 0 = 0  Furthermore w is unique if q > 1 . ——————————————————————————————— [2] Casas, E., & Kunisch, K. (2016) Herberg Variational discretization October 14, 2019 4

  6. Problem formulation Sparsity structure Remark ([2, Corollary 3.2]) Let (¯ u , ¯ u 0 ) denote a solution to ( P ) with associated state ¯ y. Then we have the following sparsity structure: � � u + ) ⊂ ( x , t ) ∈ ¯ Supp (¯ Q c : w ( x , t ) = − α � � u − ) ⊂ ( x , t ) ∈ ¯ Supp (¯ Q c : w ( x , t ) = + α � � u + x ∈ ¯ Supp (¯ 0 ) ⊂ Ω c : w ( x , 0) = − β � � u − x ∈ ¯ Supp (¯ 0 ) ⊂ Ω c : w ( x , 0) = + β u + − ¯ u − and ¯ u + u − where ¯ u = ¯ u 0 = ¯ 0 − ¯ 0 are the Jordan decompositions. ——————————————————————————————— [2] Casas, E., & Kunisch, K. (2016) Herberg Variational discretization October 14, 2019 5

  7. Fenchel predual (based on [3]) • W := { w ∈ L p ( Q ) : ∂ t w , ∂ x w , ∂ 2 x w ∈ L p ( Q ) , w | ¯ Ω ×{ T } = w | Γ × [0 , T ] = 0 } → C (¯ Q ), Φ : W → C ( ¯ Ω c ) × C (¯ Q c ) embedding and restriction, 1 q + 1 p = 1, • W ֒ • L := − ( ∂ t + ∆) : W → L p ( Q ) the adjoint operator of the state equation The Fenchel predual of (P) is: p � Lw � p w ∈ W q K ( w ) := 1 ( P ∗ ) min L p ( Q ) + � Lw , y d � L p ( Q ) , L q ( Q ) + ℓ α,β (Φ w ) , with ℓ α,β : C ( ¯ Ω c ) × C (¯ Q c ) → ¯ R � 0 , if � f � C ( ¯ Q c ) ≤ α and � f 0 � C ( ¯ Ω c ) ≤ β, ℓ α,β ( f 0 , f ) := ∞ , else . − → existence and uniqueness (for q > 1) of solutions ——————————————————————————————— [3] Clason, C., & Kunisch, K. (2011) Herberg Variational discretization October 14, 2019 6

  8. Variational discretization (based on [6]) q � y σ ( u 0 , u ) − y d � q J σ ( u 0 , u ) := 1 min ( P σ ) L q ( Q h ) ( u 0 , u ) ∈ M ( ¯ Ω c ) ×M ( ¯ Q c ) + α � u � M ( ¯ Q c ) + β � u 0 � M ( ¯ Ω c ) Petrov-Galerkin method • discrete state space: • piecewise linear and continuous finite elements in space • piecewise constant functions w.r.t. time • discrete test space: • piecewise linear and continuous finite elements in space • piecewise linear and continuous functions w.r.t. time • control space is not discretized • yields Crank-Nicholson scheme with implicit Euler step [4] , [5] ——————————————————————————————— [4] Daniels, N. von, Hinze, M., & Vierling, M. (2015) [5] Goll, C., Rannacher, R., & Wollner, W. (2015) [6] Hinze, M. (2005) Herberg Variational discretization October 14, 2019 7

  9. Variational discretization discrete optimality system delivers: � ¯ w σ � ∞ ≤ α, � ¯ w 0 , h � ∞ ≤ β, � � u + ) ⊂ ( x , t ) ∈ ¯ supp(¯ Q c : ¯ w σ ( x , t ) = − α , � � u − ) ⊂ ( x , t ) ∈ ¯ supp(¯ Q c : ¯ w σ ( x , t ) = + α , � � u + x ∈ ¯ supp(¯ 0 ) ⊂ Ω c : ¯ w 0 , h ( x ) = − β , � � u − x ∈ ¯ supp(¯ 0 ) ⊂ Ω c : ¯ w 0 , h ( x ) = + β . Herberg Variational discretization October 14, 2019 8

  10. Variational discretization discrete optimality system delivers: � ¯ w σ � ∞ ≤ α, � ¯ w 0 , h � ∞ ≤ β, � � u + ) ⊂ ( x , t ) ∈ ¯ supp(¯ Q c : ¯ w σ ( x , t ) = − α , � � u − ) ⊂ ( x , t ) ∈ ¯ supp(¯ Q c : ¯ w σ ( x , t ) = + α , � � u + x ∈ ¯ supp(¯ 0 ) ⊂ Ω c : ¯ w 0 , h ( x ) = − β , � � u − x ∈ ¯ supp(¯ 0 ) ⊂ Ω c : ¯ w 0 , h ( x ) = + β . in the generic setting: supp(¯ u ) ⊂ { ( x j , t k ) } and supp(¯ u 0 ) ⊂ { ( x j ) } . induced discrete control space: dirac measures in space and time U h × U σ Herberg Variational discretization October 14, 2019 8

  11. Variational discretization q � y σ ( u 0 , u ) − y d � q J σ ( u 0 , u ) := 1 min ( P σ ) L q ( Q h ) ( u 0 , u ) ∈ M ( ¯ Ω c ) ×M ( ¯ Q c ) + α � u � M ( ¯ Q c ) + β � u 0 � M ( ¯ Ω c ) , where y σ ( u 0 , u ) = L −∗ σ (Φ ∗ h Υ h u 0 + Φ ∗ σ Υ σ u ). (Φ h ⊕ Φ σ ) ∗ : U h × U σ → W ∗ ( Υ h ⊕ Υ σ ) : M ( ¯ Ω c ) × M ( ¯ L −∗ : W ∗ Q c ) → U h × U σ , σ , σ → Y σ σ Herberg Variational discretization October 14, 2019 9

  12. Variational discretization q � y σ ( u 0 , u ) − y d � q J σ ( u 0 , u ) := 1 min ( P σ ) L q ( Q h ) ( u 0 , u ) ∈ M ( ¯ Ω c ) ×M ( ¯ Q c ) + α � u � M ( ¯ Q c ) + β � u 0 � M ( ¯ Ω c ) , where y σ ( u 0 , u ) = L −∗ σ (Φ ∗ h Υ h u 0 + Φ ∗ σ Υ σ u ). (Φ h ⊕ Φ σ ) ∗ : U h × U σ → W ∗ ( Υ h ⊕ Υ σ ) : M ( ¯ Ω c ) × M ( ¯ L −∗ : W ∗ Q c ) → U h × U σ , σ , σ → Y σ σ u ) ∈ M ( ¯ Ω c ) × M (¯ • multiple solutions (ˆ u 0 , ˆ Q c ) • unique solution (¯ u 0 , h , ¯ u σ ) ∈ U h × U σ for q > 1 u ) ∈ M ( ¯ Ω c ) × M (¯ • ( Υ h ˆ u 0 , Υ σ ˆ u ) = (¯ u 0 , h , ¯ u σ ) for all solutions (ˆ u 0 , ˆ Q c ) (similar to [1]) ——————————————————————————————— [1] Casas, E., Clason, C., & Kunisch, K. (2013) Herberg Variational discretization October 14, 2019 9

  13. Variational discretization - Convergence Theorem Let (¯ u 0 , h , ¯ u σ ) be the unique solution of ( P σ ) belonging to U h × U σ , Γ of class C 1 , 1 , 1 < q < min { 2 , d +2 d } and σ = ( τ, h ) the discretization parameter consisting of temporal ( τ ) and spatial (h) gridsizes . If { (¯ u 0 , h , ¯ u σ ) } σ is a sequence of such solutions with associated states { ¯ y σ } σ the following convergence properties hold: | σ |→ 0 � ¯ lim y − ¯ y σ � L q ( Q ) = 0 , u σ ) ∗ u ) as | σ | → 0 in M ( ¯ Ω c ) × M (¯ (¯ u 0 , h , ¯ ⇀ (¯ u 0 , ¯ Q c ) , | σ |→ 0 ( � ¯ lim u 0 h � M ( ¯ Ω c ) , � ¯ u σ � M ( ¯ Q c ) ) = ( � ¯ u 0 � M ( ¯ Ω c ) , � ¯ u � M ( ¯ Q c ) ) , where (¯ u 0 , ¯ u ) is the unique solution of ( P σ ) and ¯ y associated state. proof similar to the convergence proof in [2] ——————————————————————————————— [2] Casas, E., & Kunisch, K. (2016) Herberg Variational discretization October 14, 2019 10

  14. Full Discretization (from [2]) J DG ( u 0 h , u σ ) := 1 q � y σ ( u 0 h , u σ ) − y d � q min ( P σ ) L q ( Q h ) ( u 0 h , u σ ) ∈ U σ × U h + α � u σ � M ( ¯ Q c ) + β � u 0 h � M ( ¯ Ω c ) Discontinuous Galerkin method • discrete state and test space: • piecewise linear and continuous finite elements in space • piecewise constant functions w.r.t. time • discrete control space: • dirac measures concentrated in the finite element nodes in space • piecewise constant functions w.r.t. time • yields Euler time stepping scheme − → similar convergence properties ——————————————————————————————— [2] Casas, E., & Kunisch, K. (2016) Herberg Variational discretization October 14, 2019 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend