pde constrained optimization using hyper reduced models
play

PDE-Constrained Optimization Using Hyper-Reduced Models Matthew J. - PowerPoint PPT Presentation

PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment PDE-Constrained Optimization Using Hyper-Reduced Models Matthew J. Zahr and Charbel Farhat Institute for Computational and Mathematical Engineering Farhat


  1. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment PDE-Constrained Optimization Using Hyper-Reduced Models Matthew J. Zahr and Charbel Farhat Institute for Computational and Mathematical Engineering Farhat Research Group Stanford University SIAM Conference on Optimization (CP13) May 19 - 22, 2014 San Diego, CA Zahr and Farhat Hyper-Reduced Optimization

  2. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment 1 PDE-Constrained Optimization 2 HROM-Constrained Optimization 3 Numerical Experiment Zahr and Farhat Hyper-Reduced Optimization

  3. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Problem Formulation Goal: Rapidly solve PDE-constrained optimization problems of the form minimize f ( w , µ ) w ∈ R N , µ ∈ R p (1) subject to R ( w , µ ) = 0 where R : R N × R p → R N is the discretized (nonlinear) PDE, w is the PDE state vector, µ is the vector of parameters, and N is assumed to be very large. Zahr and Farhat Hyper-Reduced Optimization

  4. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Reduced-Order Model Model Order Reduction (MOR) assumption: state vector lies in low-dimensional affine subspace w = ¯ w + Φy where y ∈ R n are the reduced coordinates of w in the basis Φ ∈ R N × n and n ≪ N Substitute assumption into High-Dimensional Model (HDM), R ( w , µ ) = 0 R ( ¯ w + Φy , µ ) ≈ 0 Require projection of residual in low-dimensional left subspace , with basis Ψ ∈ R N × n to be zero R r ( y , µ ) = Ψ T R ( ¯ w + Φy , µ ) = 0 Zahr and Farhat Hyper-Reduced Optimization

  5. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck R r ( y , µ ) = Ψ T R ( ¯ w + Φy , µ ) = 0 y Φ Zahr and Farhat Hyper-Reduced Optimization

  6. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck R r ( y , µ ) = Ψ T R ( ¯ w + Φy , µ ) = 0 y w + ¯ Φ Zahr and Farhat Hyper-Reduced Optimization

  7. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck R r ( y , µ ) = Ψ T R ( ¯ w + Φy , µ ) = 0 y R ( w + ¯ ) Φ Zahr and Farhat Hyper-Reduced Optimization

  8. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck R r ( y , µ ) = Ψ T R ( ¯ w + Φy , µ ) = 0 Ψ T R Zahr and Farhat Hyper-Reduced Optimization

  9. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck R r ( y , µ ) = Ψ T R ( ¯ w + Φy , µ ) = 0 R r = y Ψ T R ( w + ¯ ) Φ Zahr and Farhat Hyper-Reduced Optimization

  10. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck ∂ R r ∂ y ( y , µ ) = Ψ T ∂ R ∂ y ( ¯ w + Φy , µ ) Φ y Φ Zahr and Farhat Hyper-Reduced Optimization

  11. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck ∂ R r ∂ y ( y , µ ) = Ψ T ∂ R ∂ y ( ¯ w + Φy , µ ) Φ y w + ¯ Φ Zahr and Farhat Hyper-Reduced Optimization

  12. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck ∂ R r ∂ y ( y , µ ) = Ψ T ∂ R ∂ y ( ¯ w + Φy , µ ) Φ y ∂ R ∂ w ( w + ¯ ) Φ Zahr and Farhat Hyper-Reduced Optimization

  13. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck ∂ R r ∂ y ( y , µ ) = Ψ T ∂ R ∂ y ( ¯ w + Φy , µ ) Φ Ψ T ∂ R Φ ∂ w Zahr and Farhat Hyper-Reduced Optimization

  14. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Bottleneck ∂ R r ∂ y ( y , µ ) = Ψ T ∂ R ∂ y ( ¯ w + Φy , µ ) Φ ∂ R r y = Ψ T ∂ y ∂ R ∂ w ( w + ¯ ) Φ Φ Zahr and Farhat Hyper-Reduced Optimization

  15. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Solution: Gappy POD Approximation Assume nonlinear terms (residual/Jacobian) lie in low-dimensional subspace R ( w , µ ) ≈ Φ R r ( w , µ ) where Φ ∈ R N × n R and r : R N × R p → R n R are the reduced coordinates; n R ≪ N Determine R by solving gappy least-squares problem a ∈ R nr || Z T Φ R a − Z T R ( w , µ ) || r ( w , µ ) = arg min where Z is a restriction operator Analytical solution Z T Φ R � † � Z T R ( w , µ ) � � r ( w , µ ) = Zahr and Farhat Hyper-Reduced Optimization

  16. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Gappy POD in Practice (a) 253 sample nodes (b) 378 sample nodes (c) 505 sample nodes Zahr and Farhat Hyper-Reduced Optimization

  17. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Hyper-Reduced Model Using the Gappy POD approximation, the hyper-reduced governing equations are R h ( y , µ ) = Ψ T Φ R Z T Φ R � † � Z T R ( ¯ � � w + Φy , µ ) = 0 where E = Ψ T Φ R Z T Φ R � † � is known offline and can be precomputed Z T R R r = E Zahr and Farhat Hyper-Reduced Optimization

  18. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Hyper-Reduced Optimization Using the hyper-reduced model as a surrogate for the HDM in the PDE-constrained optimization, we have the hyper-reduced optimization problem ˜ minimize f ( y , µ ) y ∈ R n , µ ∈ R p subject to R h ( y , µ ) = 0 where R h : R k × R p → R k is the hyper-reduced PDE and y ∈ R k are the reduced coordinates, where k ≪ N . Zahr and Farhat Hyper-Reduced Optimization

  19. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Hyper-Reduced Optimization Procedure HDM Update RB Optimizer HDM Compress RB, Φ HDM ROM R R R R R R R R R HDM HDM HDM O O O O O O O O O M M M M M M M M M Zahr and Farhat Hyper-Reduced Optimization w µ ∗ ∗ � Φ y w µ ∗ Φ � ������� � ����� Φ ������������ � �������� ������� � �������� ��� � ������� y Φ ������� � ����� ������������ � �������� ������� � �������� ��� � �������

  20. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Hyper-Reduced Optimization Schematic r Φ ������� � ����� ������������ � �������� ������� � �������� ��� � ������� Zahr and Farhat Hyper-Reduced Optimization w µ ∗ ∗ � Φ y Φ ������� � ����� ������������ � �������� ������� � �������� ��� � �������

  21. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Quasi-1D Euler Flow Quasi-1D Euler equations: ∂ U ∂t + 1 ∂ ( A F ) = Q A ∂x where      0  ρ ρu ρu 2 + p  ,  , p ∂A U = ρu F = Q =     A ∂x ( e + p ) u e 0 Semi-discretization = ⇒ finite volumes with Roe flux and entropy corrections Full discretization = ⇒ Backward Euler → steady state Zahr and Farhat Hyper-Reduced Optimization

  22. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Nozzle Parametrization Nozzle parametrized with cubic splines using 13 control points and constraints requiring A ′′ ( x ) ≥ 0 convexity bounds on A ( x ) A l ( x ) ≤ A ( x ) ≤ A u ( x ) bounds on A ′ ( x ) at inlet/outlet A ′ ( x l ) ≤ 0, A ′ ( x r ) ≥ 0 Nozzle Parametrization 0.07 A l ( x ) 0.06 A u ( x ) A ( x ) Spline Points 0.05 Nozzle Height 0.04 0.03 0.02 0.01 0 0 0.05 0.1 0.15 0.2 0.25 x Zahr and Farhat Hyper-Reduced Optimization

  23. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Parameter Estimation/Inverse Design For this problem, the goal is to determine the parameter µ ∗ such that the flow achieves some optimal or desired state w ∗ || w ( µ ) − w ∗ || minimize w ∈ R N , µ ∈ R p (2) subject to R ( w , µ ) = 0 c ( w , µ ) ≤ 0 where c are the nozzle constraints. This problem is solved using the HDM as the governing equation HDM-based optimization the HROM as the governing equation HROM-based optimization Zahr and Farhat Hyper-Reduced Optimization

  24. PDE-Constrained Optimization HROM-Constrained Optimization Numerical Experiment Objective Function Convergence (a) Convergence (# HDM Evals) (b) Convergence (CPU Time) 6 10 6 10 HDM - based opt H DM - B ased Opt HROM - based opt H ROM - B ased Opt 5 5 10 10 Ob j ective Function 4 Ob j ective Function 4 10 10 3 3 10 10 2 2 10 10 1 1 10 10 0 0 10 10 0 5 10 15 20 25 30 0 500 1000 1500 2000 2500 3000 3500 C PU T im e (sec) # H DM Evaluations Zahr and Farhat Hyper-Reduced Optimization

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend