reduced order approaches for pde constrained
play

Reduced-Order Approaches for PDE-Constrained Multiobjective - PowerPoint PPT Presentation

Reduced-Order Approaches for PDE-Constrained Multiobjective Optimization joint work with U Dubrovnik / TU Eindhoven / U Erlangen / TU Mnchen / U Paderborn Stefan Volkwein University of Konstanz, Chair Numerical Optimization New Trends in


  1. Reduced-Order Approaches for PDE-Constrained Multiobjective Optimization joint work with U Dubrovnik / TU Eindhoven / U Erlangen / TU München / U Paderborn Stefan Volkwein University of Konstanz, Chair Numerical Optimization New Trends in PDE-Constrained Optimization, (RICAM, Linz), October 16, 2019 ,

  2. Outline of the Talk 1 Multiobjective Optimization 2 The Reference Point Method 3 ROM for Nonsmooth Optimization 4 Greedy Controllability of Parametrized Linear Systems 5 Conclusions 2 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  3. 1 Multiobjective Optimization 1 Multiobjective Optimization [Banholzer / Beermann / Makarov / Reichle / Spura] [M. Dellnitz / B. Gebken / S. Peitz] 3 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  4. 1 Multiobjective Optimization Multiobjective / Multicriterial Optimization [e.g., Ehrgott’05] Competing goals in many applications : e.g. – production (quality ← → production costs) – transport (travel costs ← → comfort ← → energy consumption) Multiobjective optimization : ˆ J ∈ C 1 ( U ad , R k ) , U Hilbert space ( ˆ subject to ( ˆ P ) min ˆ J 1 ( u ) ,..., ˆ ) J ( u ) = J k ( u ) u ∈ U ad ⊂ U Pareto optimal points : ¯ u ∈ U ad Pareto optimal, if there is no u ∈ U ad such that J j ( u ) ≤ ˆ ˆ u ) for 1 ≤ j ≤ k and J j ( u ) < ˆ ˆ u ) for at least one j ∈ { 1 ,..., k } J j ( ¯ J j ( ¯ Sets : Pareto set P s = � � ¯ u Pareto optimal , Pareto front P f = ˆ { } J ( P s ) ⊂ R k u ∈ U ad ¯ Pareto set Pareto front 40 35 35 30 30 25 25 ← J 1 (u)=6 (u−0.5) 2 − 3 20 20 J 2 axis 15 15 J 2 (u)=5 (u+0.75) 2 − 4 → 10 10 5 Pareto set 5 0 ← Pareto front 0 −5 −10 −5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 −5 0 5 10 15 20 25 30 35 u axis J 1 axis 4 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  5. 1 Multiobjective Optimization Optimality Conditions and Optimization Methods Karush-Kuhn-Tucker [Kuhn/Tucker’51] : ¯ u ∈ U ad Pareto optimal, then there is ¯ µ k ) ∈ R k µ = ( ¯ µ 1 ,..., ¯ ⟨ k ⟨ ˆ ⟩ k k J ′ ⟩ µ i ˆ J ′ ≥ 0 for all u ∈ U ad µ i ≤ 1 , µ i = 1 , µ i 0 ≤ ¯ ∑ ¯ ∑ ¯ i ( ¯ u ) , u − ¯ u U = ∑ ¯ i ( ¯ u ) , u − ¯ u i = 1 i = 1 i = 1 U k → first-order (necessary) optimality conditions for min ˆ µ i ˆ G ( u ; ¯ µ ) = J i ( u ) ∑ ¯ u ∈ U ad i = 1 k Weighted sum method : solve ¯ G ( u ; µ ) with 0 ≤ µ i ≤ 1 and ˆ u µ = argmin µ i = 1 ∑ i = 1 u ∈ U ad 2 Euclidean reference point method [Wierzbicki’79] : min F T ( u ) = 1 ˆ 2 ∥ T − ˆ 2 for reference point T = ( T 1 ,..., T k ) ⊤ J ( u ) ∥ u ∈ U ad Sets : Pareto set P s = � � ¯ u Pareto optimal , Pareto front P f = ˆ { } J ( P s ) ⊂ R k u ∈ U ad ¯ Pareto set Pareto front Reference point method 40 35 12 35 10 30 30 8 25 25 ← J 1 (u)=6 (u−0.5) 2 − 3 6 20 20 J 2 axis J 2 axis ← computed efficient point 4 15 15 J 2 (u)=5 (u+0.75) 2 − 4 → ← new efficient point 10 2 10 Point T 5 0 Pareto set 5 ← Pareto front 0 −2 ← Pareto front 0 −5 −4 −10 −5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 −5 0 5 10 15 20 25 30 35 −5 0 5 10 15 u axis J 1 axis J 1 axis 5 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  6. 2 The Reference Point Method 2 The Reference Point Method [Banholzer / Beermann / Makarov / Reichle / Spura] 6 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  7. 2 The Reference Point Method Scalarization by Introduction of a Distance Function T k ) ⊤ ∈ R k with ˆ Ideal vector : ˆ J i ( u ) for i = 1 ,..., k T = ( ˆ T 1 ,..., ˆ ˆ T i = min u ∈ U ad Define : g : R k → R , where, e.g., g ( s ) = 1 2 ∥ s ∥ 2 2 or g ( s ) = ∥ s ∥ ∞ { ˜ Reference point problem : for chosen T = ( T 1 ,..., T k ) ⊤ ∈ R k T ∈ R k | ˜ T ≤ ˆ } consider T = T ≤ ˆ subject to ( ˆ P T ) ˆ ( T − ˆ ) F T ( u ) = g J ( u ) u ∈ U ad min u ∈ U ad Weighted Sum Method global 4 ERPM with a-priori reference points; global RPM with p = 10; global RPM Maximum Norm; global 4 4 4 Objective Space Reference points Reference points Reference points Pareto points Pareto points Pareto points Pareto points 2 2 2 2 Objective Space Objective Space Objective Space Example : 0 0 0 0 J 1 ( u ) = u 2 ˆ 10 − 2 u 5 − 23 -2 -2 -2 -2 5 -4 -4 -4 -4 J 2 ( u ) = u 4 40 + 2 u 3 15 − u 2 ˆ 4 -6 -6 -6 -6 -8 -8 -8 -8 -6 -4 -2 0 2 -6 -4 -2 0 2 -6 -4 -2 0 2 -6 -4 -2 0 2 7 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  8. 2 The Reference Point Method Euclidean Reference Point Method � ¯ Sets : Pareto set P s = { � u Pareto optimal } u ∈ U ad ¯ Sets : Pareto front P f = ˆ J ( P s ) ⊂ R k Reference point : choose T = ( T 1 ,..., T k ) ⊤ ∈ P f + R k z + x | z ∈ P f and R k ∋ x ≤ 0 { } ≤ 0 = Reference point problem : consider k � 2 � 2 F T ( u ) = 1 ˆ � � T − ˆ � 2 = 1 � T i − ˆ � � subject to ( ˆ P T ) J ( u ) J i ( u ) u ∈ U ad min ∑ 2 2 u ∈ U ad i = 1 k First derivative : ˆ F ′ ( ˆ J i ( u ) − T i ) ⟨ ˆ J ′ T ( u ) = ∑ i ( u ) , •⟩ U ∈ L ( U , R ) i = 1 First-order optimality conditions : If ¯ u T solves ( ˆ P T ) we have ( ˆ )⟨ ˆ k J ′ ⟩ for all u ∈ U ad ∑ J i ( ¯ u T ) − T i i ( ¯ u T ) , u − ¯ u T U ≥ 0 i = 1 8 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  9. 2 The Reference Point Method Computation of the Pareto Set and Pareto Front Sets : Pareto set P s = { � � ¯ u Pareto optimal } , Pareto front P f = ˆ J ( P ) ⊂ R k u ∈ U ad ¯ Algorithm 1 (Euclidean reference point method) ) ⊤ and set i = 1 ; 1: Choose a reference point T ( 1 ) = ( T ( 1 ) ,..., T ( 1 ) 1 k 2: Compute for the distance function k � 2 ≥ 0 � T ( i ) − ˆ � 2 � T ( i ) F ( i ) ( u ) = 1 ˆ � � 2 = 1 � − ˆ � J ( u ) ∑ J j ( u ) 2 2 j j = 1 the solution to the scalar reference point problem { } u ( i ) F ( i ) P ( i ) ˆ � ( ˆ T ) ¯ T = argmin T ( u ) � u ∈ U ad 3: Choose a new reference point T ( i + 1 ) and go back to step 2. J i = ˆ u ( i ) Variation of the reference points : for ˆ T ) set J ( ¯ ϕ || ϕ ⊥ T ( i + 1 ) : = ˆ J i + h || · ∥ ϕ || ∥ + h ⊥ · for i ≥ 1 ∥ ϕ ⊥ ∥ and choose h || , h ⊥ > 0 to control the coarseness of P f points 9 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  10. 2 The Reference Point Method Heat Equation with Convection Bicriterial optimal control problem : minimize ∫ t f   ∫ � 2 d x d t � y ( t , x ) − y d ( t , x ) � � 2 ( ) ∥ y − y d ∥ J ( y , u ) = 1  = 1 0 Ω   L 2 ( Q )   ∫ t f m 2   2 � 2 d t ∥ u ∥ 2 ∑ � �  � u i ( t ) U 0 i = 1 subject to the parabolic convection-diffusion PDE m ( t , x ) ∈ Q = ( 0 , t f ) × Ω , Ω = Ω 1 ˙ ∪ ... ˙ y t ( t , x ) − ∆ y ( t , x )+ b ( t , x ) · ∇ y ( t , x ) = ∑ u i ( t ) χ Ω i ( x ) , ∪ Ω m i = 1 ( SE ) ∂ y ∂ n ( t , x )+ α i y ( t , x ) = α i y a ( t ) , ( t , x ) ∈ Σ i = ( 0 , t f ) × Γ i , 1 ≤ i ≤ r x ∈ Ω ⊂ R d , d ∈ { 1 , 2 , 3 } y ( 0 , x ) = y ◦ ( x ) , and the bilateral control constraints u ∈ U ad = { u ∈ U = L 2 ( 0 , t f ; R m ) � u a ( t ) ≤ u ( t ) ≤ u b ( t ) in [ 0 , t f ] � } Assumptions : y d ∈ L 2 ( 0 , t f ; L 2 ( Ω )) , b bounded, χ Ω i ∈ L 2 ( Ω ) , α i ≥ 0 , y a ∈ L 2 ( 0 , t f ) , y ◦ ∈ L 2 ( Ω ) , u a ≤ u b in U Bilinear form for ( SE ): for ϕ , ψ ∈ H 1 ( Ω ) and t ∈ [ 0 , t f ] define r r ∫ ∫ ∫ ( ) ∑ ∑ a ( t ; ϕ , ψ ) = Ω ∇ ϕ · ∇ ψ + b ( t , · ) ∇ ϕ ψ d x + α i ϕψ d x , ⟨ g a ( t ) , ϕ ⟩ = α i y a ( t ) ϕ d x Γ i Γ i i = 1 i = 1 10 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

  11. 2 The Reference Point Method Reduced Formulation for the Multiobjective Problem Bilinear form for ( SE ): for ϕ , ψ ∈ H 1 ( Ω ) and t ∈ [ 0 , t f ] define r r ∫ ∫ ∫ ( ) ∑ ∑ a ( t ; ϕ , ψ ) = Ω ∇ ϕ · ∇ ψ + b ( t , · ) · ∇ ϕ ψ d x + α i ϕψ d x , ⟨ g a ( t ) , ϕ ⟩ = α i y a ( t ) ϕ d x Γ i Γ i i = 1 i = 1 Control-to-state operator : y = S ( u ) solves for given control u ∈ U = L 2 ( 0 , t f ; R m ) m d ∫ ϕ d x for all ϕ ∈ H 1 ( Ω ) and ∑ d t ⟨ y ( t ) , ϕ ⟩ L 2 ( Ω ) + a ( t ; y ( t ) , ϕ ) = ⟨ g a ( t ) , ϕ ⟩ + u i ( t ) y ( 0 ) = y ◦ Ω i i = 1 ( ˆ 2 ( ) ( ) ∥ S ( u ) − y d ∥ ) J 1 ( S ( u ) , u ) J 1 ( u ) = 1 L 2 ( Q ) Reduced cost functional : ˆ for u ∈ U J ( u ) = = ˆ J 2 ( u ) J 2 ( S ( u ) , u ) 2 ∥ u ∥ 2 U Reduced multicriterial optimal control problem : min ˆ subject to { � � u a ≤ u ≤ u b in [ 0 , t f ] } ( ˆ P ) J ( u ) u ∈ U ad = u ∈ U 11 / 30 PDE-Constrained Multiobjective Optimization by ROM Stefan Volkwein

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend