on the complexity of computing gr bner bases for weighted
play

On The Complexity Of Computing Grbner Bases For Weighted Homogeneous - PowerPoint PPT Presentation

On The Complexity Of Computing Grbner Bases For Weighted Homogeneous Systems Jean-Charles Faugre 1 Mohab Safey El Din 1 Thibaut Verron 2 1 Universit Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, quipe P OL S YS


  1. On The Complexity Of Computing Gröbner Bases For Weighted Homogeneous Systems Jean-Charles Faugère 1 Mohab Safey El Din 1 Thibaut Verron 2 1 Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe P OL S YS Laboratoire d’Informatique de Paris 6, UMR CNRS 7606 2 Toulouse Universités, INP-ENSEEIHT-IRIT, CNRS, Équipe APO Séminaire Géométrie et Algèbre Effectives , 2 juin 2017

  2. Polynomial system solving Applications: ◮ Numerical: give approximations of ◮ Cryptography the solutions ◮ Physics, industry ◮ Newton’s method ◮ Homotopy continuation method ◮ Mathematics. . . ◮ Symbolic: give exact solutions ◮ Gröbner bases Polynomial equations ◮ Resultant method ◮ Triangular sets f 1 ( X ) = ··· = f m ( X ) = 0 ◮ Geometric resolution Solutions, e.g. find all the solutions if finite (dimension 0)

  3. Computing Gröbner bases for generic systems: the normal strategy Degree 10 Regular Gröbner basis algorithms (e.g. F 5 ) ◮ Compute a basis by iteratively 8 building and reducing matrices of polynomials of same degree 6 ◮ Normal strategy: perform lowest-degree reductions first Degree falls 4 ◮ Degree = indicator of progress Step 0 2 4 6 8 10 12 Regular sequences = ⇒ algorithmic regularity! Degree fall? ◮ F 5 -criterion: no reduction to zero in F 5 ( ⇐ ◮ Definition: reduction resulting in a lower degree polynomial ⇒ all matrices have full-rank) for regular sequences ◮ Example: X · ( Y − 1 ) − Y · ( X − 1 ) = XY − YX + Y − X ◮ Degree falls ⇐ ⇒ Reduction to zero of the highest degree components ◮ Consequence: “next d ” < d + 1 � Regularity in the affine sense = regularity of the highest degree components

  4. Computing Gröbner bases for generic systems: the normal strategy Degree 10 Regular Gröbner basis algorithms (e.g. F 5 ) Irregular ◮ Compute a basis by iteratively 8 building and reducing matrices of polynomials of same degree 6 ◮ Normal strategy: perform lowest-degree reductions first Degree falls 4 ◮ Degree = indicator of progress Step 0 2 4 6 8 10 12 Regular sequences = ⇒ algorithmic regularity! Degree fall? ◮ F 5 -criterion: no reduction to zero in F 5 ( ⇐ ◮ Definition: reduction resulting in a lower degree polynomial ⇒ all matrices have full-rank) for regular sequences ◮ Example: X · ( Y − 1 ) − Y · ( X − 1 ) = XY − YX + Y − X ◮ Degree falls ⇐ ⇒ Reduction to zero of the highest degree components ◮ Consequence: “next d ” < d + 1 � Regularity in the affine sense = regularity of the highest degree components

  5. Computing Gröbner bases for generic systems: the normal strategy Degree 10 Regular Gröbner basis algorithms (e.g. F 5 ) Irregular ◮ Compute a basis by iteratively 8 building and reducing matrices of polynomials of same degree 6 ◮ Normal strategy: perform lowest-degree reductions first Degree falls 4 ◮ Degree = indicator of progress Step 0 2 4 6 8 10 12 Regular sequences = ⇒ algorithmic regularity! Degree fall? ◮ F 5 -criterion: no reduction to zero in F 5 ( ⇐ ◮ Definition: reduction resulting in a lower degree polynomial ⇒ all matrices have full-rank) for regular sequences ◮ Example: X · ( Y − 1 ) − Y · ( X − 1 ) = XY − YX + Y − X ◮ Degree falls ⇐ ⇒ Reduction to zero of the highest degree components ◮ Consequence: “next d ” < d + 1 � Regularity in the affine sense = regularity of the highest degree components

  6. Computing Gröbner bases for generic systems: the normal strategy Degree 10 Regular Gröbner basis algorithms (e.g. F 5 ) Irregular ◮ Compute a basis by iteratively 8 building and reducing matrices of polynomials of same degree 6 ◮ Normal strategy: perform lowest-degree reductions first Degree falls 4 ◮ Degree = indicator of progress Step 0 2 4 6 8 10 12 Regular sequences = ⇒ algorithmic regularity! Degree fall? ◮ F 5 -criterion: no reduction to zero in F 5 ( ⇐ ◮ Definition: reduction resulting in a lower degree polynomial ⇒ all matrices have full-rank) for regular sequences ◮ Example: X · ( Y − 1 ) − Y · ( X − 1 ) = XY − YX + Y − X ◮ Degree falls ⇐ ⇒ Reduction to zero of the highest degree components ◮ Consequence: “next d ” < d + 1 � Regularity in the affine sense = regularity of the highest degree components

  7. Computing Gröbner bases for generic systems: the normal strategy Degree 10 Regular Gröbner basis algorithms (e.g. F 5 ) Irregular ◮ Compute a basis by iteratively 8 building and reducing matrices of polynomials of same degree 6 ◮ Normal strategy: perform lowest-degree reductions first Degree falls 4 ◮ Degree = indicator of progress Step 0 2 4 6 8 10 12 Regular sequences = ⇒ algorithmic regularity! Degree fall? ◮ F 5 -criterion: no reduction to zero in F 5 ( ⇐ ◮ Definition: reduction resulting in a lower degree polynomial ⇒ all matrices have full-rank) for regular sequences ◮ Example: X · ( Y − 1 ) − Y · ( X − 1 ) = XY − YX + Y − X ◮ Degree falls ⇐ ⇒ Reduction to zero of the highest degree components ◮ Consequence: “next d ” < d + 1 � Regularity in the affine sense = regularity of the highest degree components This notion depends on the homogeneous structure!

  8. Strategy and complexity for generic homogeneous systems Homogeneous, generic, with total degree ( d 1 ,..., d n ) (zero-dimensional) F ( X 1 ,..., X n ) Buchberger [Buchberger 1976] F 4 [Faugère 1999] F 5 [Faugère 2002] . . . GR EV L EX basis [Faugère, Gianni, Lazard and Mora 1993] FGLM L EX basis

  9. Strategy and complexity for generic homogeneous systems Homogeneous, generic, with total degree ( d 1 ,..., d n ) (zero-dimensional) F ( X 1 ,..., X n )  Highest degree ∼ # of reduction steps    n    ∑ ( d i − 1 )+ 1 = d reg ≤  F 5 i = 1   � n + d − 1 �   Size of the matrix at degree d =    d GR EV L EX basis Number of solutions = ∏ n i = 1 d i (Bézout bound) FGLM � 3   � 3 � n � n + d reg − 1 L EX basis ∏ O + n d i   d reg i = 1

  10. The weighted homogeneous structure: an example (1) Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013) 41518 49874 45709 46659 32367 37627             33900 32136 10698 59796 23164 25182              X 16  X 8  X 7  X 6 1 X 2  X 5 1 X 3  X 4 1 X 4 0 = 8840 34252 45336 38267 64111 59951 5 + 1 + 1 X 2 + 2 + 2 + 2 +                         22855 24932 26076 39647 63692 60422       29081 11782 55993 27683 29095 11080 27200 64271 49159 59456 17060 55016             38476 43542 11328 49518 60912 15550              X 3 1 X 5  X 2 1 X 6  X 1 X 7  X 8  X 7  X 6 28698 57950 33520 46071 64907 19633 2 + 2 + 2 + 2 + 1 X 3 + 1 X 2 X 3 +                         5708 52276 65039 49716 61073 28147       47718 9739 27178 33760 37208 25442 31264 38258 19475 4467         26817 44188 52270 31828         35757  X 5 1 X 2 46688  X 4 1 X 3 9282  X 3 1 X 4 34222  X 2 1 X 5 2 X 3 + 2063 smaller monomials 2 X 3 + 2 X 3 + 2 X 3 +                 43106 55434 51171 30753     44133 64632 17150 37662 Goal: compute a Gröbner basis Alt. strategy: use weights = substitute X i ← X w i for W = ( w 1 ,..., w 5 ) Normal strategy (total degree): i What weights? ◮ Non generic ◮ W = ( 1 , 1 , 1 , 1 , 1 ) : nothing changed ◮ Non regular in the affine sense ◮ W = ( 2 , 2 , 1 , 1 , 1 ) : better... ◮ Non regular computation ◮ W = ( 2 , 2 , 2 , 2 , 1 ) : regular!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend