on the complexity of computing gr bner bases for weighted
play

On The Complexity Of Computing Grbner Bases For Weighted Homogeneous - PowerPoint PPT Presentation

On The Complexity Of Computing Grbner Bases For Weighted Homogeneous Systems Jean-Charles Faugre 1 Mohab Safey El Din 1 , 2 Thibaut Verron 1 1 Universit Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, quipe P OL S YS


  1. On The Complexity Of Computing Gröbner Bases For Weighted Homogeneous Systems Jean-Charles Faugère 1 Mohab Safey El Din 1 , 2 Thibaut Verron 1 1 Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe P OL S YS Laboratoire d’Informatique de Paris 6, UMR CNRS 7606 2 Institut Universitaire de France Journées Nationales de Calcul Formel, 6 novembre 2014

  2. Context Polynomial System Solving ◮ Input: polynomial system f 1 , . . . , f m ∈ K [ X 1 , . . . , X n ] ◮ Output: exact solution Important and difficult ◮ Many applications ◮ Cryptography, mechanics... ◮ Difficult problem ◮ Decision problem is NP-hard ◮ Many tools ◮ Triangular sets [Aubry, Lazard and Moreno Maza 1999] ◮ Resultants [Cattani and Dickenstein 2005] ◮ Geometric resolution [Giusti, Lecerf and Salvy 2001] ◮ Gröbner bases [Buchberger 1965]

  3. Context Polynomial System Solving ◮ Input: polynomial system f 1 , . . . , f m ∈ K [ X 1 , . . . , X n ] ◮ Output: exact solution Computing Gröbner bases (Buchberger, F 4 , F 5 ...) 1. Select a set of pairs of polynomials from a queue 2. Reduce these polynomials 3. Add the new polynomials to the basis, add new pairs to the queue 4. Repeat 1-3 until the queue is empty

  4. Context Polynomial System Solving Importance of structure ◮ Systems from applications are not generic! ◮ Input: polynomial system f 1 , . . . , f m ∈ K [ X 1 , . . . , X n ] ◮ Design dedicated strategies ◮ Output: exact solution ◮ Complexity studies with generic properties Computing Gröbner bases Examples of structures (Buchberger, F 4 , F 5 ...) ◮ Homogeneous systems 1. Select a set of pairs of ◮ Multi-homogeneous systems (Dickenstein, polynomials from a queue Emiris, Faugère/Safey/Spaenlehauer...) 2. Reduce these polynomials ◮ Systems with group symmetries (Colin, 3. Add the new polynomials to Gattermann, Faugère/Rahmany, the basis, add new pairs to Faugère/Svartz...) the queue ◮ Weighted homogeneous systems 4. Repeat 1-3 until the queue is ◮ Sparse systems (Sturmfels, empty Faugère/Spaenlehauer/Svartz...)

  5. Problem statement: an example (1) Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013) 7871 53362 26257 25203 19817 9843 11204               18574 50900 128 23117 29737 3752 25459               e 16 e 8 e 7 e 6 e 2 e 5 e 3 e 4 e 4 e 3 e 5 0 =  14294   36407   3037   28918   52187   27006   58263  + ˜ 1 + ˜ 1 ˜ e 2 + ˜ 1 ˜ 2 + ˜ 1 ˜ 2 + ˜ 1 ˜ 2 + ˜ 1 ˜   5             2  32775   58813   38424   29298   36574   64195   17964                20289 20802 41456 56353 46683 63059 57146 46217 63811 40524 4522 27518           5478 50777 6881 1728 32176           e 3 + 2067 smaller monomials e 2 e 6 e 7 e 8 e 7 e 6  45631   48809   1238   18652   31159  + ˜ 1 ˜ 2 + e 1 ˜ ˜ 2 + ˜ 2 + ˜ 1 ˜ e 3 + ˜ 1 ˜ e 2 ˜            13171   1858   8056   54885   28424            42548 55751 54831 8241 5276 Description of the system Goal: compute a Gröbner basis ◮ Normal strategy (total degree) ◮ Ideal invariant under the group → difficult ( Z / 2 Z ) n − 1 ⋊ S n , → non regular rewritten with the invariants: ◮ Weighted degree strategy � e i := e i ( x 2 1 , . . . , x 2 n ) ( 1 ≤ i ≤ n − 1 ) ˜ Weight (˜ e i ) = 2 · Weight ( e i ) → easier e n ( x 1 , . . . , x n ) → regular ◮ n equations of degree 2 n − 1 in F q [˜ e 1 , . . . , ˜ e n − 1 , e n ] ◮ 1 DLP = thousands of such systems

  6. Problem statement: an example (1) Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013) 7871 53362 26257 25203 19817 9843 11204               18574 50900 128 23117 29737 3752 25459               e 16 e 8 e 7 e 6 e 2 e 5 e 3 e 4 e 4 e 3 e 5 0 =  14294   36407   3037   28918   52187   27006   58263  + ˜ 1 + ˜ 1 ˜ e 2 + ˜ 1 ˜ 2 + ˜ 1 ˜ 2 + ˜ 1 ˜ 2 + ˜ 1 ˜   5             2  32775   58813   38424   29298   36574   64195   17964                20289 20802 41456 56353 46683 63059 57146 46217 63811 40524 4522 27518           5478 50777 6881 1728 32176           e 3 + 2067 smaller monomials e 2 e 6 e 7 e 8 e 7 e 6  45631   48809   1238   18652   31159  + ˜ 1 ˜ 2 + e 1 ˜ ˜ 2 + ˜ 2 + ˜ 1 ˜ e 3 + ˜ 1 ˜ e 2 ˜            13171   1858   8056   54885   28424            42548 55751 54831 8241 5276 Description of the system Goal: compute a Gröbner basis ◮ Normal strategy (total degree) ◮ Ideal invariant under the group → difficult ( Z / 2 Z ) n − 1 ⋊ S n , → non regular rewritten with the invariants: ◮ Weighted degree strategy � e i := e i ( x 2 1 , . . . , x 2 n ) ( 1 ≤ i ≤ n − 1 ) ˜ Weight (˜ e i ) = 2 · Weight ( e i ) → easier e n ( x 1 , . . . , x n ) → regular ◮ n equations of degree 2 n − 1 in F q [˜ e 1 , . . . , ˜ e n − 1 , e n ] ◮ 1 DLP = thousands of such systems

  7. Problem statement: an example (2) Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013) Algorithm F 5 , step by step Degree 30 Normal 20 10 5 1 10 15 20 25 30 35 Step ◮ 5 equations of degree ( 16 , . . . , 16 ) in 5 variables with W = ( 2 , . . . , 2 , 1 ) ◮ 65 536 solutions ◮ Without weights: 2 h (37 steps) ◮ With weights: 15 min (29 steps)

  8. Problem statement: an example (3) Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013) 7871 53362 26257 25203 19817 9843 11204               18574 50900 128 23117 29737 3752 25459               e 16 e 8 e 7 e 6 e 2 e 5 e 3 e 4 e 4 e 3 e 5 0 =  14294   36407   3037   28918   52187   27006   58263  + ˜ 1 + ˜ 1 ˜ e 2 + ˜ 1 ˜ 2 + ˜ 1 ˜ 2 + ˜ 1 ˜ 2 + ˜ 1 ˜   5             2  32775   58813   38424   29298   36574   64195   17964                20289 20802 41456 56353 46683 63059 57146 46217 63811 40524 4522 27518           5478 50777 6881 1728 32176           e 3 + 2067 smaller monomials e 2 e 6 e 7 e 8 e 7 e 6  45631   48809   1238   18652   31159  + ˜ 1 ˜ 2 + e 1 ˜ ˜ 2 + ˜ 2 + ˜ 1 ˜ e 3 + ˜ 1 ˜ e 2 ˜            13171   1858   8056   54885   28424            42548 55751 54831 8241 5276 Description of the system Goal: compute a Gröbner basis ◮ Normal strategy (total degree) ◮ Ideal invariant under the group → difficult ( Z / 2 Z ) n − 1 ⋊ S n , → non regular rewritten with the invariants: ◮ Weighted degree strategy � e i := e i ( x 2 1 , . . . , x 2 n ) ( 1 ≤ i ≤ n − 1 ) ˜ Weight (˜ e i ) = 2 · Weight ( e i ) → easier e n ( x 1 , . . . , x n ) → regular ◮ n equations of degree 2 n − 1 in F q [˜ e 1 , . . . , ˜ e n − 1 , e n ] ◮ 1 DLP = thousands of such systems

  9. Problem statement: an example (4) Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013) Algorithm F 5 , step by step Degree W -degree / 2 30 Normal Weighted 20 10 5 1 10 15 20 25 30 35 Step ◮ 5 equations of degree ( 16 , . . . , 16 ) in 5 variables with W = ( 2 , . . . , 2 , 1 ) ◮ 65 536 solutions ◮ Without weights: 2 h (37 steps) ◮ With weights: 15 min (29 steps)

  10. Problem statement: another example Ideal of relations between 50 monomials of degree 2 in 25 variables Algorithm F 4 , step by step Degree Normal 20 Weighted 10 5 0 15 25 35 Step ◮ 50 equations of degree 2 in 75 variables ◮ GR EV L EX ordering (e.g. for a 2-step strategy) ◮ Without weights: 3 . 9 h (34 steps reaching degree 22) ◮ With weights: 0 . 1 s (5 steps reaching degree 6)

  11. Problem statement: another example Ideal of relations between 50 monomials of degree 2 in 25 variables Algorithm F 4 , step by step Degree Normal 20 Weighted 10 0 5 15 25 35 Step Problem ◮ Strategy for this structure? ◮ Complexity bounds? Relevant generic properties?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend