characteristic classes of homological surface bundles and
play

Characteristic classes of homological surface bundles and - PowerPoint PPT Presentation

Characteristic classes of homological surface bundles and four-dimensional topology Shigeyuki MORITA based on jw/w Takuya SAKASAI and Masaaki SUZUKI October 25, 2016 Shigeyuki MORITA Characteristic classes of homological surface bundles


  1. Characteristic classes of homological surface bundles and four-dimensional topology Shigeyuki MORITA based on jw/w Takuya SAKASAI and Masaaki SUZUKI October 25, 2016 Shigeyuki MORITA Characteristic classes of homological surface bundles

  2. Contents Contents An “enlargement” H g, 1 of the mapping class group 1 Representations of H g, 1 2 Kontsevich’s theorem and homology of Out F n 3 Characteristic classes of homological surface bundles 4 Prospect 5 Shigeyuki MORITA Characteristic classes of homological surface bundles

  3. An “enlargement” H g, 1 of the mapping class group (1) Mapping class groups: M g = π 0 Diff + Σ g , M g, 1 = π 0 Diff(Σ g , D 2 ) Another description: rel ∂ ∼ M g, 1 = { (Σ g, 1 × I, ϕ ) ; ϕ : Σ g, 1 = Σ g, 1 × { 1 }} / isotopy Shigeyuki MORITA Characteristic classes of homological surface bundles

  4. An “enlargement” H g, 1 of the mapping class group (1) Mapping class groups: M g = π 0 Diff + Σ g , M g, 1 = π 0 Diff(Σ g , D 2 ) Another description: rel ∂ ∼ M g, 1 = { (Σ g, 1 × I, ϕ ) ; ϕ : Σ g, 1 = Σ g, 1 × { 1 }} / isotopy Group of homology cobordism classes of homology cylinders: Garoufalidis-Levine (based on Goussarov and Habiro): rel ∂ ∼ H g, 1 = { ( homology Σ g, 1 × I, ϕ ) ; ϕ : Σ g, 1 = Σ g, 1 × { 1 }} / homology cobordism Shigeyuki MORITA Characteristic classes of homological surface bundles

  5. An “enlargement” H g, 1 of the mapping class group (2) two versions: big kernel , Freedman H top H smooth − − − − − − − − − − − − − → g, 1 g, 1 surjective enlargements of M g, 1 Shigeyuki MORITA Characteristic classes of homological surface bundles

  6. An “enlargement” H g, 1 of the mapping class group (2) two versions: big kernel , Freedman H top H smooth − − − − − − − − − − − − − → g, 1 g, 1 surjective enlargements of M g, 1 Θ 3 := { homology 3 -spheres } / smooth homology cobordism infinite rank by Furuta, Fintushel-Stern Define a group H g, 1 by the following central extension 0 → Θ 3 = H smooth → H smooth → H g, 1 → 1 0 , 1 g, 1 Shigeyuki MORITA Characteristic classes of homological surface bundles

  7. An “enlargement” H g, 1 of the mapping class group (3) Problem Study the Euler class χ ( H smooth ) ∈ H 2 ( H g, 1 ; Θ 3 ) g, 1 Shigeyuki MORITA Characteristic classes of homological surface bundles

  8. An “enlargement” H g, 1 of the mapping class group (3) Problem Study the Euler class χ ( H smooth ) ∈ H 2 ( H g, 1 ; Θ 3 ) g, 1 One of the foundational results of Freedman: Theorem (Freedman) Any homology 3 -sphere bounds a contractible topological 4 -manifold so that Θ 3 top = 0 → H top It follows that H smooth g, 1 factors through H g, 1 g, 1 Shigeyuki MORITA Characteristic classes of homological surface bundles

  9. An “enlargement” H g, 1 of the mapping class group (4) Θ 3 → H smooth Freedman → H top → H g, 1 − − − − − − g, 1 g, 1 Problem (about “Picard groups” ) Study the following homomorphisms ( g ≥ 3 ) Harer H 2 ( H top g, 1 ) → H 2 ( H g, 1 ) → H 2 ( H smooth ) → H 2 ( M g, 1 ) ∼ = Z g, 1 Shigeyuki MORITA Characteristic classes of homological surface bundles

  10. An “enlargement” H g, 1 of the mapping class group (4) Θ 3 → H smooth Freedman → H top → H g, 1 − − − − − − g, 1 g, 1 Problem (about “Picard groups” ) Study the following homomorphisms ( g ≥ 3 ) Harer H 2 ( H top g, 1 ) → H 2 ( H g, 1 ) → H 2 ( H smooth ) → H 2 ( M g, 1 ) ∼ = Z g, 1 ∼ ∞ -rank? ∞ -rank? = ? Shigeyuki MORITA Characteristic classes of homological surface bundles

  11. Representations of H g, 1 (1) Theorem (Dehn-Nielsen-Zieschang) • M g ∼ = Out + π 1 Σ g (outer automorphism group) • M g, 1 ∼ = { ϕ ∈ Aut π 1 Σ g, 1 ; ϕ ( ζ ) = ζ } ζ : boundary curve “differentiate” ⇒ Shigeyuki MORITA Characteristic classes of homological surface bundles

  12. Representations of H g, 1 (1) Theorem (Dehn-Nielsen-Zieschang) • M g ∼ = Out + π 1 Σ g (outer automorphism group) • M g, 1 ∼ = { ϕ ∈ Aut π 1 Σ g, 1 ; ϕ ( ζ ) = ζ } ζ : boundary curve “differentiate” ⇒ ✓ ✏ Definition (“Lie algebra” of M g, 1 ) h g, 1 = { symplectic derivation of the free Lie algebra L ( H Q ) } ✒ ✑ ∞ ⊕ h g, 1 = h g, 1 ( k ) : symplectic derivation Lie algebra of L ( H Q ) k =0 very important in low dimensional topology Shigeyuki MORITA Characteristic classes of homological surface bundles

  13. Representations of H g, 1 (2) Mal’cev nilpotent completion of π 1 Σ g, 1 : · · · → N d +1 → N d → · · · → N 1 = H Q → 0 ( H Q = H 1 (Σ g, 1 ; Q )) ⇒ obtain a series of representations of M g, 1 : ρ ∞ = { ρ d } d : M g, 1 → lim Aut 0 N d ( ρ d : M g, 1 → Aut 0 N d ) ← − d →∞ Shigeyuki MORITA Characteristic classes of homological surface bundles

  14. Representations of H g, 1 (2) Mal’cev nilpotent completion of π 1 Σ g, 1 : · · · → N d +1 → N d → · · · → N 1 = H Q → 0 ( H Q = H 1 (Σ g, 1 ; Q )) ⇒ obtain a series of representations of M g, 1 : ρ ∞ = { ρ d } d : M g, 1 → lim Aut 0 N d ( ρ d : M g, 1 → Aut 0 N d ) ← − d →∞ associated embedding of Lie algebras: ✓ ✏ ∞ ⊕ small ideal h + τ : M g, 1 ( d ) / M g, 1 ( d + 1) ⊂ ⊂ h g, 1 g, 1 d =1 ✒ ✑ M g, 1 ( d ) := Ker ρ d Johnson filtration Shigeyuki MORITA Characteristic classes of homological surface bundles

  15. Representations of H g, 1 (3) Stallings’ theorem ⇒ Theorem (Garoufalidis-Levine, Habegger) There exists a homomorphism ρ ∞ : H top ˜ g, 1 → lim Aut 0 N d ← − d →∞ ρ d : H top which extends ρ ∞ , each finite factor ˜ g, 1 → Aut 0 N d is surjective over Z for any d ≥ 1 Shigeyuki MORITA Characteristic classes of homological surface bundles

  16. Representations of H g, 1 (3) Stallings’ theorem ⇒ Theorem (Garoufalidis-Levine, Habegger) There exists a homomorphism ρ ∞ : H top ˜ g, 1 → lim Aut 0 N d ← − d →∞ ρ d : H top which extends ρ ∞ , each finite factor ˜ g, 1 → Aut 0 N d is surjective over Z for any d ≥ 1 τ d M g, 1 ( d ) − − − − − − − → h g, 1 ( d ) image small  �  � � � ∩ τ d ˜ H top g, 1 ( d ) − − − − − → h g, 1 ( d ) surjective Shigeyuki MORITA Characteristic classes of homological surface bundles

  17. Representations of H g, 1 (4) ρ ∞ M g, 1 − − − − − → lim Aut 0 N d ← − injective d →∞  �  � � � ∩ surjective ρ ∞ ˜ → H top H smooth − − − − − − − − − → lim Aut 0 N d g, 1 g, 1 ← − d →∞ ⇒ obtain Shigeyuki MORITA Characteristic classes of homological surface bundles

  18. Representations of H g, 1 (4) ρ ∞ M g, 1 − − − − − → lim Aut 0 N d ← − injective d →∞  �  � � � ∩ surjective ρ ∞ ˜ → H top H smooth − − − − − − − − − → lim Aut 0 N d g, 1 g, 1 ← − d →∞ ⇒ obtain d →∞ H ∗ (Aut 0 N d ) → H ∗ ( H top ρ ∗ ˜ ∞ : lim g, 1 ; Q ) d →∞ H ∗ (Aut 0 N d ) → H ∗ ( H top ρ ∗ ˜ ∞ : lim g →∞ lim g, 1 ; Q ) Shigeyuki MORITA Characteristic classes of homological surface bundles

  19. Representations of H g, 1 (5) Aut 0 N d is a linear algebraic group and we have Aut 0 N d ∼ = IAut 0 N d ⋊ Sp(2 g, Q ) Lie(IAut 0 N d ) ∼ = h + g, 1 [ d ] ( truncated ) Proposition ∞ , 1 ) Sp ⊗ H ∗ (Sp(2 ∞ , Q ); Q ) d →∞ H ∗ (Aut 0 N d ) ∼ c (ˆ = H ∗ h + g →∞ lim lim � h + h + g →∞ h + ∞ , 1 : completion of ∞ , 1 = lim g, 1 Shigeyuki MORITA Characteristic classes of homological surface bundles

  20. Representations of H g, 1 (5) Aut 0 N d is a linear algebraic group and we have Aut 0 N d ∼ = IAut 0 N d ⋊ Sp(2 g, Q ) Lie(IAut 0 N d ) ∼ = h + g, 1 [ d ] ( truncated ) Proposition ∞ , 1 ) Sp ⊗ H ∗ (Sp(2 ∞ , Q ); Q ) d →∞ H ∗ (Aut 0 N d ) ∼ c (ˆ = H ∗ h + g →∞ lim lim � h + h + g →∞ h + ∞ , 1 : completion of ∞ , 1 = lim g, 1 ⇒ obtain ∞ , 1 ) Sp ⊗ H ∗ (Sp(2 ∞ , Q ); Q ) → H ∗ ( H top c (ˆ h + ρ ∗ ∞ : H ∗ ˜ g, 1 ; Q ) Shigeyuki MORITA Characteristic classes of homological surface bundles

  21. Kontsevich’s theorem and homology of Out F n (1) ✓ ✏ Lie version of Kontsevich graph homology ✒ ✑ By using theory of Outer Space due to Culler and Vogtmann: Theorem (Kontsevich, Lie version) ∞ , 1 ) Sp 2 n ∼ PH k c ( � h + = H 2 n − k (Out F n +1 ; Q ) ⇒   ⊕ ∞ , 1 ) Sp ∼ H ∗ c ( � h +  = Λ H ∗ (Out F n ; Q ) n ≥ 2 Λ : free associative algebra degree ( x ) = 2 n − 2 − k ( x ∈ H k (Out F n ; Q )) Shigeyuki MORITA Characteristic classes of homological surface bundles

  22. Kontsevich’s theorem and homology of Out F n (2) ⊕ h ∞ , 1 ) dual H 2 n − 3 (Out F n ; Q ) ⇔ PH 1 ⇔ H 1 ( h + c ( � ∞ , 1 ) Sp n ≥ 2 Culler-Vogtmann: vcd(Out F n ) = 2 n − 3 Problem What are the generators: H 1 ( h + ∞ , 1 ) for the Lie algebra h + ∞ , 1 ? Shigeyuki MORITA Characteristic classes of homological surface bundles

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend